A Sparse Shared Aperture Design for Simultaneous Transmit and Receive Arrays with Beam Constraints
<p>Block diagram of ALSTAR cancellation architecture.</p> "> Figure 2
<p>The flowchart of sparse shared aperture design based on beam constraints.</p> "> Figure 3
<p>The structure of the improved wideband microstrip antenna element: (<b>a</b>) the front of the antenna, (<b>b</b>) The back of the antenna.</p> "> Figure 4
<p>The performance of improved wideband antenna element: (<b>a</b>) The S parameter of the antenna at a frequency of 8–12 GHz; (<b>b</b>) the gain of the antenna at a frequency of 8–12 GHz; (<b>c</b>) the pattern of the antenna at a frequency of 8 GHz; (<b>d</b>) the pattern of the antenna at a frequency of 10 GHz; (<b>e</b>) the pattern of the antenna at a frequency of 12 GHz.</p> "> Figure 5
<p>The characteristic parameters of improved wideband antenna element.</p> "> Figure 6
<p>Schematic diagram of the 12 <math display="inline"><semantics> <mo>×</mo> </semantics></math> 12 array structure.</p> "> Figure 7
<p>Pattern of the conventional ALSTAR array along with that of the desiged array architecture at the <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mi>S</mi> <mi>L</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>K</mi> <mrow> <mi>M</mi> <mi>L</mi> <mi>G</mi> </mrow> </msub> <mo>=</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>K</mi> <mrow> <mi>B</mi> <mi>W</mi> </mrow> </msub> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>. (<b>a</b>) the transmit pattern <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> </mrow> </semantics></math>, (<b>b</b>) the receive pattern <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>r</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 8
<p>Array architectures for ALSTAR: (<b>left</b>) convention array, and (<b>right</b>) desiged array architectures at the <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mi>S</mi> <mi>L</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>K</mi> <mrow> <mi>M</mi> <mi>L</mi> <mi>G</mi> </mrow> </msub> <mo>=</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>K</mi> <mrow> <mi>B</mi> <mi>W</mi> </mrow> </msub> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>Pattern of the conventional ALSTAR array along with that of the desiged array architecture at the <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mi>S</mi> <mi>L</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>K</mi> <mrow> <mi>M</mi> <mi>L</mi> <mi>G</mi> </mrow> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>K</mi> <mrow> <mi>B</mi> <mi>W</mi> </mrow> </msub> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>. (<b>a</b>) the transmit pattern <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> </mrow> </semantics></math>, (<b>b</b>) the receive pattern <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>r</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 10
<p>Designed array architecture for ALSTAR at the <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mi>S</mi> <mi>L</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>K</mi> <mrow> <mi>M</mi> <mi>L</mi> <mi>G</mi> </mrow> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>K</mi> <mrow> <mi>B</mi> <mi>W</mi> </mrow> </msub> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 11
<p>Pattern of the conventional ALSTAR array along with that of the desiged array architecture at the <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mi>S</mi> <mi>L</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>K</mi> <mrow> <mi>M</mi> <mi>L</mi> <mi>G</mi> </mrow> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>K</mi> <mrow> <mi>B</mi> <mi>W</mi> </mrow> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>. (<b>a</b>) the transmit pattern <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> </mrow> </semantics></math>, (<b>b</b>) the receive pattern <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>r</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 12
<p>Desiged array architecture for ALSTAR at the <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mrow> <mi>S</mi> <mi>L</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>K</mi> <mrow> <mi>M</mi> <mi>L</mi> <mi>G</mi> </mrow> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>K</mi> <mrow> <mi>B</mi> <mi>W</mi> </mrow> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>.</p> "> Figure 13
<p>Comparison of performance indicators of the system under sparse rates: (<b>a</b>) the EII of ALSTAR system; (<b>b</b>) the <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mi>n</mi> </msub> </mrow> </semantics></math> of ALSTAR system; (<b>c</b>) the EIRP of ALSTAR system; (<b>d</b>) the EIS of ALSTAR system; (<b>e</b>) the <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> </mrow> </semantics></math> of ALSTAR system; (<b>f</b>) the <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>r</mi> </msub> </mrow> </semantics></math> of ALSTAR system.</p> "> Figure 13 Cont.
<p>Comparison of performance indicators of the system under sparse rates: (<b>a</b>) the EII of ALSTAR system; (<b>b</b>) the <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mi>n</mi> </msub> </mrow> </semantics></math> of ALSTAR system; (<b>c</b>) the EIRP of ALSTAR system; (<b>d</b>) the EIS of ALSTAR system; (<b>e</b>) the <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> </mrow> </semantics></math> of ALSTAR system; (<b>f</b>) the <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>r</mi> </msub> </mrow> </semantics></math> of ALSTAR system.</p> "> Figure 14
<p>The <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>r</mi> </msub> </mrow> </semantics></math> curves of without beam constraint, shared aperture design and sparse shared aperture design at four sparsity rates in different scan angle: (<b>a</b>) the <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> </mrow> </semantics></math> of ALSTAR system; (<b>b</b>) the <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mi>r</mi> </msub> </mrow> </semantics></math> of ALSTAR system.</p> "> Figure 15
<p>Conventional arrays and sparse shared aperture arrays configuration at four sparsity rates.</p> ">
Abstract
:1. Introduction
2. System Model of ALSTAR
3. Sparse Shared Aperture for ALSTAR with Beam Constraints
3.1. Sparse Shared Aperture Design
3.2. Optimization Model Design
- First, initialize a binary population in which all individuals are symmetrical up and down, left and right.
- Then, calculate the fitness value of each individual according to Equation (22), get the individual with the best fitness value, and judge whether it meets the termination criterion.
- If it is satisfied, the algorithm stops, and the optimal individual is output as the optimization result; if not, the genetic operation of selection, crossover, and mutation is performed on the individuals in the population.
- Finally, ensure that the geometric shapes of the transmit and receive array formed after each individual rearrangement in the newly generated population are symmetrical up and down, left and right.
- For the evolved offspring population, the termination criterion is judged again, and the cycle proceeds until the termination condition is satisfied.
4. Simulation Results
4.1. Phased Array Design
4.2. Performance Analyze with Sparse Shared Aperture ALSTAR Arrays
4.2.1. Shared Aperture Design
4.2.2. Sparse Shared Aperture Design
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bliss, D.W.; Parker, P.A.; Margetts, A.R. Simultaneous Transmission and Reception for Improved Wireless Network Performance. In Proceedings of the 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, Madison, WI, USA, 26–29 August 2007; pp. 478–482. [Google Scholar]
- Liyanaarachchi, S.D.; Barneto, C.B.; Riihonen, T.; Heino, M.; Valkama, M. Joint Multi-User Communication and MIMO Radar Through Full-Duplex Hybrid Beamforming. In Proceedings of the 2021 1st IEEE International Online Symposium on Joint Communications & Sensing (JC&S), Dresden, Germany, 23–24 February 2021; pp. 1–5. [Google Scholar]
- Sharma, S.K.; Bogale, T.E.; Le, L.B.; Chatzinotas, S.; Wang, X.; Ottersten, B. Dynamic Spectrum Sharing in 5G Wireless Networks with Full-Duplex Technology: Recent Advances and Research Challenges. IEEE Commun. Surv. Tutor. 2017, 20, 674–707. [Google Scholar] [CrossRef] [Green Version]
- Xie, M.; Wei, X.; Tang, Y.; Hu, D. A Robust Design for Aperture-Level Simultaneous Transmit and Receive with Digital Phased Array. Sensors 2021, 22, 109. [Google Scholar] [CrossRef] [PubMed]
- Riihonen, T.; Korpi, D.; Rantula, O.; Rantanen, H.; Saarelainen, T.; Valkama, M. Inband Full-Duplex Radio Transceivers: A Paradigm Shift in Tactical Communications and Electronic Warfare? IEEE Commun. Mag. 2017, 55, 30–36. [Google Scholar] [CrossRef]
- Riihonen, T.; Turunen, M.; Pärlin, K.; Heino, M.; Marin, J.; Korpi, D. Full-Duplex Operation for Electronic Protection by Detecting Communication Jamming at Transmitter. In Proceedings of the 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, London, UK, 31 August–3 September 2020; pp. 1–5. [Google Scholar]
- Adrat, M.; Keller, R.; Tschauner, M.; Wilden, S.; Le Nir, V.; Riihonen, T.; Pärlin, K. Full-Duplex Radio–Increasing the Spectral Efficiency for Military Applications. In Proceedings of the 2019 International Conference on Military Communications and Information Systems (ICMCIS), Budva, Montenegro, 14–15 May 2019; pp. 1–5. [Google Scholar]
- Everett, E.; Shepard, C.; Zhong, L.; Sabharwal, A. SoftNull: Many-Antenna Full-Duplex Wireless via Digital Beamforming. IEEE Trans. Wirel. Commun. 2016, 15, 8077–8092. [Google Scholar] [CrossRef]
- Qiu, J.; Yao, Y.; Wu, G. Research on Aperture-Level Simultaneous Transmit and Receive. J. Eng. 2019, 21, 8006–8008. [Google Scholar] [CrossRef]
- Liang, D.; Xiao, P.; Chen, G.; Ghoraishi, M.; Tafazolli, R. Digital self-interference cancellation for Full-Duplex MIMO systems. In Proceedings of the 2015 International Wireless Communications and Mobile Computing Conference (IWCMC), Dubrovnik, Croatia, 24–28 August 2015; pp. 403–407. [Google Scholar]
- Zhang, J.; Li, S.; Chang, W.; Jiang, T.; Li, B.; Liang, Z. Study on Full-Duplex Channel Characteristic for Simultaneous Transmit and Receive Used in Phased Array. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, Georgia, 7–12 July 2019; pp. 1495–1496. [Google Scholar]
- Zhang, J.; Chang, W.; Zheng, J. Study on Different Array Allocation for Simultaneous Transmit and Receive Used in Phased Array. In Proceedings of the 2019 IEEE International Symposium on Phased Array System & Technology (PAST), Waltham, MA, USA, 15–18 October 2019; pp. 1–5. [Google Scholar]
- Yang, F.; Yang, S.; Chen, X.; Yang, X. Aperture-Level Self-Interference Cancelation for Full-Duplex Phased Arrays by Phase-Only Transmitting Beamfoming. In Proceedings of the 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, 10–15 July 2022; pp. 1872–1873. [Google Scholar] [CrossRef]
- Liu, A.; Sheng, W.; Riihonen, T. Per-Antenna Self-Interference Cancellation Beamforming Design for Digital Phased Array. IEEE Signal Process. Lett. 2022, 29, 2442–2446. [Google Scholar] [CrossRef]
- Doane, J.P.; Kolodziej, K.E.; Perry, B.T. Simultaneous transmit and receive performance of an 8-channel digital phased array. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; pp. 1043–1044. [Google Scholar] [CrossRef]
- Doane, J.P.; Kolodziej, K.E.; Perry, B.T. Simultaneous Transmit and Receive with Digital Phased Arrays. In Proceedings of the 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), Waltham, MA, USA, 18–21 October 2016; pp. 1–6. [Google Scholar]
- Cummings, I.T.; Doane, J.P.; Schulz, T.J.; Havens, T.C. Aperture-Level Simultaneous Transmit and Receive with Digital Phased Arrays. IEEE Trans. Signal Process. 2020, 68, 1243–1258. [Google Scholar] [CrossRef]
- Ding, Y.R.; Cheng, Y.J. Ku/Ka Wide-Band Dual-Band Dual-Polarized Shared-Aperture Phased Array Antenna with High Aperture Efficiency. In Proceedings of the 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Singapore, 4–10 December 2021; pp. 1189–1190. [Google Scholar] [CrossRef]
- Sadhukhan, G.; Chakrabarti, S.; Siddiqui, J.Y. S-Band Dual Circularly Polarized Multi-Beam Shared Aperture Phase Array Antenna for Ground Reception System. In Proceedings of the 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Bangalore, India, 12–15 December 2022; pp. 832–836. [Google Scholar] [CrossRef]
- Hao, R.S.; Zhang, J.F.; Jin, S.C.; Liu, D.G.; Li, T.J.; Cheng, Y.J. K-/Ka-Band Shared-Aperture Phased Array with Wide Bandwidth and Wide Beam Coverage for LEO Satellite Communication. IEEE Trans. Antennas Propag. 2023, 71, 672–680. [Google Scholar] [CrossRef]
- Zhang, J.F.; Li, T.J.; Cheng, Y.J. K-/Ka-Band Circular-polarized Shared-Aperture Phased Array Antenna for Satellite Communication. In Proceedings of the 2022 IEEE Conference on Antenna Measurements and Applications (CAMA), Guangzhou, China, 14–17 December 2022; pp. 1–3. [Google Scholar] [CrossRef]
- Zhong, S.-S.; Sun, Z.; Kong, L.-B.; Gao, C.; Wang, W.; Jin, M.-P. Tri-Band Dual-Polarization Shared-Aperture Microstrip Array for SAR Applications. IEEE Trans. Antennas Propag. 2012, 60, 4157–4165. [Google Scholar] [CrossRef]
- Cummings, I.T.; Schulz, T.J.; Havens, T.C.; Doane, J.P. Optimizing the Information- Theoretic Partitioning of Simultaneous Transmit and Receive Phased Arrays. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 565–566. [Google Scholar]
- Cummings, I.T.; Schulz, T.J.; Doane, J.P.; Havens, T.C. An Information-Theoretic Approach to Partitioning Simultaneous Transmit and Receive Digital Phased Arrays. In Proceedings of the 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, OK, USA, 23–27 April 2018; pp. 0478–0483. [Google Scholar]
- Samaiyar, A.; Son, D.C.; Elmansouri, M.A.; Filipovic, D.S. Simultaneous Transmit and Receive with Shared-Aperture Arrays. In Proceedings of the 2020 International Applied Computational Electromagnetics Society Symposium (ACES), Monterey, CA, USA, 27–31 July 2020; pp. 1–2. [Google Scholar]
- Hu, D.; Wei, X.; Xie, M.; Tang, Y. A Sparse Design for Aperture-Level Simultaneous Transmit and Receive Arrays. Electronics 2022, 11, 3381. [Google Scholar] [CrossRef]
- Hu, H.; Lei, L.; Hu, Y.; Wu, Q. Subarray weighting method for sidelobe suppression of difference pattern based on genetic algorithm. In Proceedings of the 2008 IEEE Antennas and Propagation Society International Symposium, San Diego, CA, USA, 5–11 July 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Rocca, P.; Mailloux, R.J.; Toso, G. GA-Based Optimization of Irregular Subarray Layouts for Wideband Phased Arrays Design. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 131–134. [Google Scholar] [CrossRef]
- Mohan, A.; Raj, A.A.B. Array Thinning of Beamformers using Simple Genetic Algorithm. In Proceedings of the 2020 International Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE), Keonjhar, India, 29–31 July 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Haupt, R.L. Thinned arrays using genetic algorithms. IEEE Trans. Antennas Propag. 1994, 42, 993–999. [Google Scholar] [CrossRef]
- Hu, D.; Wei, X.; Xie, M.; Tang, Y. A Method to Improve the Performance of Arrays for Aperture-Level Simultaneous Transmit and Receive. Int. J. Antennas Propag. 2022, 2022, 1687–5869. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Wp | 23.5 |
W | 35 |
L1 | 10.5 |
L2 | 13.2 |
Lp | 24.3 |
L | 35 |
Lf | 17 |
g1 | 1.63 |
g2 | 0.3 |
g3 | 0.5 |
H | 2.337 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, D.; Wei, X.; Xie, M.; Tang, Y. A Sparse Shared Aperture Design for Simultaneous Transmit and Receive Arrays with Beam Constraints. Sensors 2023, 23, 5391. https://doi.org/10.3390/s23125391
Hu D, Wei X, Xie M, Tang Y. A Sparse Shared Aperture Design for Simultaneous Transmit and Receive Arrays with Beam Constraints. Sensors. 2023; 23(12):5391. https://doi.org/10.3390/s23125391
Chicago/Turabian StyleHu, Dujuan, Xizhang Wei, Mingcong Xie, and Yanqun Tang. 2023. "A Sparse Shared Aperture Design for Simultaneous Transmit and Receive Arrays with Beam Constraints" Sensors 23, no. 12: 5391. https://doi.org/10.3390/s23125391