Patterned Reed–Muller Sequences with Outer A-Channel Codes and Projective Decoding for Slot-Controlled Unsourced Random Access
<p>The top line is the indexes of bit position. White = 0, Blue = 1, Purple = <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math>, Orange= <span class="html-italic">i</span>, Green = <math display="inline"><semantics> <mrow> <mo>−</mo> <mi>i</mi> </mrow> </semantics></math>.</p> "> Figure 2
<p>The diagram of the transmitter technique in our proposed URA system.</p> "> Figure 3
<p>The distribution of PRM sequences across slots for <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>m</mi> <mo>¨</mo> </mover> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math> for the benchmark scheme, both under <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>The distribution of PRM sequences across slots for <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>m</mi> <mo>¨</mo> </mover> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math> for the benchmark scheme, both under <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>150</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>The distribution of PRM sequences across slots for <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>m</mi> <mo>¨</mo> </mover> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math> for the benchmark scheme, both under <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>200</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>The distribution of PRM sequences across slots for <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>m</mi> <mo>¨</mo> </mover> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math>.</p> "> Figure 7
<p>The performance for quasi-static Rayleigh fading channel is expressed as the required <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mi>b</mi> </msub> <mo>/</mo> <msub> <mi>N</mi> <mn>0</mn> </msub> </mrow> </semantics></math> per active user vs. the number of active users <math display="inline"><semantics> <msub> <mi>K</mi> <mi>a</mi> </msub> </semantics></math>, given the channel uses <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>32</mn> <mo>,</mo> <mn>768</mn> </mrow> </semantics></math>, the users’ messages <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> bits and the target error probability <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mi>e</mi> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mi>f</mi> </msub> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math>. The optimal parameters in our PRM-based scheme are carefully chosen to minimize the required <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mi>b</mi> </msub> <mo>/</mo> <msub> <mi>N</mi> <mn>0</mn> </msub> </mrow> </semantics></math>. The curves are presented as follows: <span class="html-italic">t</span>-tree code for <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mn>5</mn> </mrow> </semantics></math> from [<a href="#B22-sensors-23-05239" class="html-bibr">22</a>], PRM-tree scheme (optimal parameters are taken from the <a href="#sensors-23-05239-t001" class="html-table">Table 1</a> and <a href="#sensors-23-05239-t002" class="html-table">Table 2</a>), Reed–Solomon scheme from [<a href="#B22-sensors-23-05239" class="html-bibr">22</a>] and PRM-RS scheme (optimal parameters are taken from <a href="#sensors-23-05239-t003" class="html-table">Table 3</a>).</p> "> Figure 8
<p>Probability of error <math display="inline"><semantics> <msub> <mi>P</mi> <mi>e</mi> </msub> </semantics></math> vs. <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mi>b</mi> </msub> <mo>/</mo> <msub> <mi>N</mi> <mn>0</mn> </msub> </mrow> </semantics></math> for three system loads (number of active users), <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mi>a</mi> </msub> <mo>=</mo> <mn>130</mn> <mo>,</mo> <mn>180</mn> </mrow> </semantics></math> and 220.</p> ">
Abstract
:1. Introduction
1.1. Main Contributions of the Paper
- This paper designs a common codebook that optimizes URA energy efficiency performance by embedding zero bits in the second-order Reed–Muller sequences in accordance with a specific principle, which is the simplified version proposed by Pllaha et al. (2022) [37,38,39], and we denote it as a patterned Reed–Muller (PRM) code.
- Instead of the available common codebook that uses Reed–Muller (RM) properties in the binary domain, we explore its exclusive natures in the complex domain. In detail, we prove the algebraic and geometric properties of the second-order Reed–Muller sequence in the complex field, and related theories for PRM codes are also proven.
- A projective decoder is proposed for the PRM sequence and the fundamental theory for proposing such precise detection algorithm stems from its geometry property.
- The dependencies enlightened by the patterned property of PRM sequences prescribe how the information messages are mapped to the elements in a pool of slot-pattern controls (SPCs). The information message guides a single user to select the corresponding SPC from the pool and users randomly select SPCs as their transmission criteria to reduce collision chance.
- The factors affecting the reliability of the PRM detection are discussed. As a result of our simulations, we conclude that the proposed slot-pattern-control PRM-based scheme offers significant advantages in terms of error probability.
- Instead of the outer tree code proposed by Amalladinne et al. (2020) [19], we couple the proposed slot-pattern-control PRM-based scheme with two practical list recoverable codes. The first is a modification of the tree code called t-tree code and the second is based on the Reed–Solomon codes and Guruswami–Sudan list decoding algorithm. The optimal setups are determined to minimize SNR by optimizing the inner and outer codes jointly. In regimes of practical interest, the proposed scheme compares favorably with benchmark schemes regarding the energy-per-bit requirement to meet a target error probability as well as the number of accommodated active users in the system.
1.2. Notation
2. System Model
3. Reed–Muller Sequences
3.1. Binary RM Codes
3.2. Geometry of Complex RM Sequence
4. Expansion of Complex Reed–Muller Sequences
4.1. Patterned Reed–Muller Codes
- The evidence demonstrates that, given a sequence of length , PRM codes may increase the origin capacity of while maintaining the code distance and the cardinality of the PRM set is equal to
- In PRM sequence construction, the RM is not just inserted into a -length sequence, but has a sign attached (Equation (12) illustrates this). The sign comes from the part, i.e., the constraint of means the post- bits should be equal, which leads to the two identical vector multiplication (modulo 4) equal to the weight of or ;
- The vector and matrix serve as the determinants of the non-zero RM part, where only the upper matrix is valid. Moreover, the subspace and determine the “patterned” form.
4.2. Geometry Property of PRM sequence
4.3. The Proposed Geometry-Based PRM Detection
Algorithm 1: Estimation of single PRM sequence |
5. Unsourced Random Access Scheme Using Patterned Reed–Muller Sequence
5.1. Transmitter
5.1.1. Transmitter Design
5.1.2. The Construction of Slot-Pattern-Control Pool
5.2. Slot-Based PRM Detection and Reed–Solomon List Recovery Decoding
Algorithm 2: PRM reconstruction in a multi-user scenario |
6. Performance Analysis
The PRM Distribution for a Single Slot
7. Simulation Results
7.1. The Distribution of Slot-Based PRM Sequences
- PRM sequences are distributed more evenly when active users employ different SPCs. If collisions occur, more codewords will overlap at one slot, resulting in a rise in multi-user interference (MUI) and an increased probability of failure detection.
- Figure 6 illustrates that the “no collision” case is no longer valid when .
7.2. The Overall Performance of the SPC-Based CCS for URA System
7.2.1. t-Tree Code as the Outer Code
- PRM sequence for a given rank suffices for a user’s message delivery, indicating that the PRM codebook is highly spectral efficient due to its large sequence space.
- The outer-code length is used for and for . Substituting and into (38), we observe that the latter case () performs relatively poorly since it has a greater number of simultaneous appearances, which leads to inner-code failure at for and, for , . This result is consistent with Figure 6.
- For the curves of , the “PRM-tree” scheme corrects the case of the “t-tree code” scheme in which the overall performance degrades as t increases, i.e., an outer code with a larger t performs better on the condition that the inner code has the same length and the required path number is sufficient (“PRM-tree” schemes use paths and paths for “t-tree code”).
7.2.2. PRM-Based Reed–Solomon Scheme
- The minimum exceeds when the user count reaches 220.
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saad, W.; Bennis, M.; Chen, M. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Netw. 2019, 34, 134–142. [Google Scholar] [CrossRef]
- Guo, F.; Yu, F.R.; Zhang, H.; Li, X.; Ji, H.; Leung, V.C. Enabling massive IoT toward 6G: A comprehensive survey. IEEE Internet Things J. 2021, 8, 11891–11915. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, X.; Zhou, S.; Yang, W.; Polyanskiy, Y.; Caire, G. Massive access for future wireless communication systems. IEEE Wirel. Commun. 2020, 27, 148–156. [Google Scholar] [CrossRef]
- Chen, X.; Ng, D.W.K.; Yu, W.; Larsson, E.G.; Al-Dhahir, N.; Schober, R. Massive access for 5G and beyond. IEEE J. Sel. Areas Commun. 2020, 39, 615–637. [Google Scholar] [CrossRef]
- Chettri, L.; Bera, R. A comprehensive survey on Internet of Things (IoT) toward 5G wireless systems. IEEE Internet Things J. 2020, 7, 16–32. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, L.; Sun, Y.; Chen, Y.; Liang, J.; Liu, J.; Hernando, F.J.L. PoC of SCMA-based uplink grant-free transmission in UCNC for 5G. IEEE Internet Things J. 2017, 35, 1353–1362. [Google Scholar]
- Masoudi, M.; Azari, A.; Yavuz, E.A.; Cavdar, C. Grant-free radio access IoT networks: Scalability analysis in coexistence scenarios. In Proceedings of the IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–7. [Google Scholar]
- Shahab, M.B.; Abbas, R.; Shirvanimoghaddam, M.; Johnson, S.J. Grant-free non-orthogonal multiple access for IoT: A survey. IEEE Commun. Surv. Tutorials 2020, 22, 1805–1838. [Google Scholar] [CrossRef]
- Chen, X.; Guo, D. Many-access channels: The Gaussian case with random user activities. In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Honolulu, HI, USA, 30 June–5 July 2014; pp. 3127–3131. [Google Scholar]
- Chen, X.; Chen, T.Y.; Guo, D. Capacity of Gaussian many-access channels. IEEE Trans. Inf. Theory 2017, 63, 3516–3539. [Google Scholar] [CrossRef]
- Polyanskiy, Y. A perspective on massive random-access. In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Aachen, Germany, 25–30 June 2017; pp. 2523–2527. [Google Scholar]
- Zadik, I.; Polyanskiy, Y.; Thrampoulidis, C. Improved bounds on Gaussian MAC and sparse regression via Gaussian inequalities. In Proceedings of the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019; pp. 430–434. [Google Scholar]
- Kowshik, S.S.; Polyanskiy, Y. Fundamental limits of many-user MAC with finite payloads and fading. IEEE Trans. Inf. Theory 2021, 67, 5853–5884. [Google Scholar] [CrossRef]
- Ngo, K.H.; Lancho, A.; Durisi, G. Unsourced multiple access with random user activity. arXiv 2022, arXiv:2202.06365. [Google Scholar] [CrossRef]
- Pradhan, A.K.; Amalladinne, V.K.; Narayanan, K.R.; Chamberland, J.F. LDPC Codes with Soft Interference Cancellation for Uncoordinated Unsourced Multiple Access. In Proceedings of the IEEE International Conference on Communications (ICC), Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar]
- Amalladinne, V.K.; Pradhan, A.K.; Rush, C.; Chamberland, J.F.; Narayanan, K.R. Unsourced random access with coded compressed sensing: Integrating AMP and belief propagation. IEEE Trans. Inf. Theory 2022, 68, 2384–2409. [Google Scholar] [CrossRef]
- Truhachev, D.; Bashir, M.; Karami, A.; Nassaji, E. Low-Complexity Coding and Spreading for Unsourced Random Access. IEEE Commun. Lett 2021, 25, 774–778. [Google Scholar] [CrossRef]
- Amalladinne, V.K.; Vem, A.; Soma, D.K.; Narayanan, K.R.; Chamberland, J.F. A coupled compressive sensing scheme for unsourced multiple access. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 6628–6632. [Google Scholar]
- Amalladinne, V.K.; Chamberland, J.F.; Narayanan, K.R. A Coded Compressed Sensing Scheme for Unsourced Multiple Access. IEEE Trans. Inf. Theory 2020, 66, 6509–6533. [Google Scholar] [CrossRef]
- Fengler, A.; Haghighatshoar, S.; Jung, P.; Caire, G. Non-Bayesian Activity Detection, Large-Scale Fading Coefficient Estimation, and Unsourced Random Access With a Massive MIMO Receiver. IEEE Trans. Inf. Theory 2021, 67, 2925–2951. [Google Scholar] [CrossRef]
- Andreev, K.; Rybin, P.; Frolov, A. Reed-Solomon coded compressed sensing for the unsourced random access. In Proceedings of the 2021 17th International Symposium on Wireless Communication Systems (ISWCS), Berlin, Germany, 6–9 September 2021; pp. 1–5. [Google Scholar]
- Andreev, K.; Rybin, P.; Frolov, A. Coded Compressed Sensing with List Recoverable Codes for the Unsourced Random Access. IEEE Trans. Commun. 2022, 70, 7886–7898. [Google Scholar] [CrossRef]
- Liang, Z.; Zheng, J.; Ni, J. Index modulation–aided mixed massive random access. Front. Commun. Networks 2021, 2, 694557. [Google Scholar] [CrossRef]
- Che, J.; Zhang, Z.; Yang, Z.; Chen, X.; Zhong, C.; Ng, D.W.K. Unsourced random massive access with beam-space tree decoding. IEEE J. Sel. Areas Commun. 2021, 40, 1146–1161. [Google Scholar] [CrossRef]
- Fengler, A.; Jung, P.; Caire, G. SPARCs for unsourced random access. IEEE Trans. Inf. Theory 2021, 67, 6894–6915. [Google Scholar] [CrossRef]
- Ebert, J.R.; Amalladinne, V.K.; Chamberland, J.F.; Narayanan, K.R. A Hybrid Approach to Coded Compressed Sensing Where Coupling Takes Place Via the Outer Code. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 4770–4774. [Google Scholar]
- Ebert, J.R.; Amalladinne, V.K.; Rini, S.; Chamberland, J.F.; Narayanan, K.R. Coded demixing for unsourced random access. IEEE Trans. Signal Process. 2022, 70, 2972–2984. [Google Scholar] [CrossRef]
- Howard, S.D.; Calderbank, A.R.; Searle, S.J. A fast reconstruction algorithm for deterministic compressive sensing using second order Reed-Muller codes. In Proceedings of the 2008 42nd Annual Conference on Information Sciences and Systems, Princeton, NJ, USA, 19–21 March 2008; pp. 11–15. [Google Scholar]
- Calderbank, R.; Jafarpour, S. Reed Muller sensing matrices and the LASSO. In Proceedings of the Sequences and Their Applications–SETA 2010: 6th International Conference (SETA), Paris, France, 13–17 September 2010; pp. 442–463. [Google Scholar]
- Calderbank, R.; Howard, S.; Jafarpour, S. Sparse reconstruction via the Reed-Muller sieve. In Proceedings of the 2010 IEEE International Symposium on Information Theory (ISIT), Austin, TX, USA, 13–18 June 2010; pp. 1973–1977. [Google Scholar]
- Zhang, L.; Luo, J.; Guo, D. Neighbor discovery for wireless networks via compressed sensing. Perform. Eval. 2013, 70, 457–471. [Google Scholar] [CrossRef]
- Zhang, H.; Li, R.; Wang, J.; Chen, Y.; Zhang, Z. Reed-Muller sequences for 5G grant-free massive access. In Proceedings of the GLOBECOM 2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–7. [Google Scholar]
- Wang, J.; Zhang, Z.; Hanzo, L. Joint active user detection and channel estimation in massive access systems exploiting Reed–Muller sequences. IEEE J. Sel. Top. Signal Process 2019, 13, 739–752. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Hanzo, L. Incremental massive random access exploiting the nested Reed-Muller sequences. IEEE Trans. Wirel. Commun. 2020, 20, 2917–2932. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Chen, X.; Zhong, C.; Hanzo, L. Unsourced massive random access scheme exploiting reed-muller sequences. IEEE Trans. Commun. 2020, 70, 1290–1303. [Google Scholar] [CrossRef]
- Calderbank, R.; Thompson, A. CHIRRUP: A practical algorithm for unsourced multiple access. Inform. Inference J. IMA 2020, 9, 875–897. [Google Scholar] [CrossRef]
- Tirkkonen, O.; Calderbank, R. Codebooks of complex lines based on binary subspace chirps. In Proceedings of the 2019 IEEE Information Theory Workshop (ITW), Visby, Sweden, 25–28 August 2019; pp. 1–5. [Google Scholar]
- Pllaha, T.; Tirkkonen, O.; Calderbank, R. Reconstruction of multi-user binary subspace chirps. In Proceedings of the 2020 IEEE International Symposium on Information Theory (ISIT), Los Angeles, CA, USA, 21–26 June 2020; pp. 531–536. [Google Scholar]
- Pllaha, T.; Tirkkonen, O.; Calderbank, R. Binary subspace chirps. IEEE Trans. Inf. Theory 2022, 68, 7735–7752. [Google Scholar] [CrossRef]
- Abbe, E.; Ye, M. Reed-Muller codes polarize. IEEE Trans. Inf. Theory 2020, 66, 7311–7332. [Google Scholar] [CrossRef]
- Abbe, E.; Shpilka, A.; Ye, M. Reed–Muller codes: Theory and algorithms. IEEE Trans. Inf. Theory 2020, 67, 3251–3277. [Google Scholar] [CrossRef]
- Calderbank, R.; Howard, S.; Jafarpour, S. Construction of a large class of deterministic sensing matrices that satisfy a statistical isometry property. IEEE J. Sel. Top. Signal Process. 2022, 4, 358–374. [Google Scholar] [CrossRef]
- Rengaswamy, N.; Calderbank, R.; Kadhe, S.; Pfister, H.D. Logical Clifford synthesis for stabilizer codes. IEEE Trans. Quantum Eng. 2020, 1, 1–17. [Google Scholar] [CrossRef]
- Maslov, D.; Roetteler, M. Shorter stabilizer circuits via Bruhat decomposition and quantum circuit transformations. IEEE Trans. Inf. Theory 2018, 64, 4729–4738. [Google Scholar] [CrossRef]
t | G | J | |||||
---|---|---|---|---|---|---|---|
19 | 9 | 10 | |||||
15 | 7 | 8 | − | − | |||
15 | 7 | 8 | − | − |
Parameter Description | Specific Value |
---|---|
Transmit a message of size, B | 100 bits |
PRM sequence length, | |
The length of RS codes, | |
The number of slots, | |
The number of complex channel uses, T | |
The capacity of slot-occupation pool, | |
The length of slot-occupation control, | |
G-ary | |
J-ary | |
The capacity of PRM codebook, | |
The code rate |
Parameter Description | Specific Value |
---|---|
Transmit a message of size, B | 100 bits |
PRM sequence length, | |
The length of RS codes, | |
The number of slots, | |
The number of complex channel uses, T | |
The capacity of slot-occupation pool, | |
The length of slot-occupation control, | 9 |
G-ary | 15 |
J-ary | 6 |
The capacity of PRM codebook, | |
The code rate of RS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, W.; Zhang, H. Patterned Reed–Muller Sequences with Outer A-Channel Codes and Projective Decoding for Slot-Controlled Unsourced Random Access. Sensors 2023, 23, 5239. https://doi.org/10.3390/s23115239
Xie W, Zhang H. Patterned Reed–Muller Sequences with Outer A-Channel Codes and Projective Decoding for Slot-Controlled Unsourced Random Access. Sensors. 2023; 23(11):5239. https://doi.org/10.3390/s23115239
Chicago/Turabian StyleXie, Wenjiao, and Huisheng Zhang. 2023. "Patterned Reed–Muller Sequences with Outer A-Channel Codes and Projective Decoding for Slot-Controlled Unsourced Random Access" Sensors 23, no. 11: 5239. https://doi.org/10.3390/s23115239