A Tailor-Made, Mirror-Based Infrared Scanner for the Reflectography of Paintings: Development, Features, and Applications
<p>Components and modules of the scanning system.</p> "> Figure 2
<p>Graphical scheme showing the assembling of the individual components into the operating scanning system.</p> "> Figure 3
<p>Control module of the scanning system based on the Arduino Uno board.</p> "> Figure 4
<p>Front panel view of the application developed in the LabVIEW™ environment.</p> "> Figure 5
<p>(<b>a</b>) Scheme of the system’s optical design showing the path of the laser beam used to measure the camera–painting working distance (red lines) and the path of the infrared radiation focused on the camera plane for image acquisition (green solid lines for the path outside the lens and green dashed lines for the path inside the lens). (<b>b</b>) USAF resolution target as captured by the scanning system.</p> "> Figure 6
<p>Rotation of the camera coordinates (<span class="html-italic">x</span>, <span class="html-italic">y</span>, <span class="html-italic">z</span>) of an angle <span class="html-italic">α</span> and to the equivalent reference frame (<span class="html-italic">x</span>′, <span class="html-italic">y</span>′, <span class="html-italic">z</span>′) for camera (<b>a</b>) and mirror (<b>c</b>) movement. If we add a rotation <span class="html-italic">β</span>, the new reference frames (<span class="html-italic">x</span>″, <span class="html-italic">y</span>″, <span class="html-italic">z</span>″) for the camera (<b>b</b>) and mirror (<b>d</b>) are different since the reference frame for the mirror undergoes an additional rotation <span class="html-italic">β</span> around the <span class="html-italic">z</span>″ axis with respect to the camera.</p> "> Figure 7
<p>Gandolfino da Roreto (attributed), <span class="html-italic">Genealogy of the Virgin</span>, ca. 1510–1520, painting on wooden panel, 173 × 83 cm. Church of Santa Maria Assunta, Grignasco (Novara), Italy.</p> "> Figure 8
<p>Instrumental setup for IRR of the panel painting in the CCR “La Venaria Reale” conservation laboratories. Scanning was performed by placing the work in horizontal position on an easel.</p> "> Figure 9
<p>(<b>a</b>) All individual infrared images captured from the top and bottom sections of the panel painting are placed side by side in preparation for the merging process. (<b>b</b>) Stitching of the individual 2000 + 2000 image sets. (<b>c</b>) Final recomposition with flat field correction, image registration, and gray levels optimization.</p> "> Figure 10
<p>Detail of the painting’s lower right quadrant, depicting the Virgin’s sister, Salome, with her two sons, James the Greater and John the Evangelist. Compared to the visible light photograph (<b>left</b>), the IRR image (<b>right</b>) shows compositional changes such as the shading on John the Evangelist’s chest and an overall modified position for James the Greater, highlighted with green and red arrows.</p> "> Figure 11
<p>Detail of Salome’s proper left hand holding the baby. Compared to the visible light photograph (<b>top</b>), the IRR image (<b>bottom</b>) shows compositional changes such as the figure’s middle finger in bent position.</p> "> Figure 12
<p>Detail of the painting’s upper right quadrant, depicting a landscape scene beyond a curtain. Compared to the visible light photograph (<b>a</b>), the IRR image (<b>b</b>) shows compositional changes such as a house with roof, walls, and windows.</p> "> Figure 13
<p>Detail of the painting’s lower left quadrant, depicting two children. Compared to the visible light photograph (<b>left</b>), the IRR image (<b>right</b>) shows compositional changes such as a subsequent addition of a sleeve in Joseph’s robe.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optical and Mechanical Components
2.2. Electronic and Software Components
2.3. Optical Scheme
2.4. Post-Processing and Merging
2.5. Case Study
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Asperen de Boer, J.R.J. Infrared Reflectography: A Method for the Examination of Paintings. Appl. Opt. 1968, 7, 1711. [Google Scholar] [CrossRef] [PubMed]
- van Asperen de Boer, J.R.J. Reflectography of Paintings Using an Infrared Vidicon television System. Stud. Conserv. 1969, 14, 96–118. [Google Scholar] [CrossRef]
- Gargano, M.; Ludwig, N.; Poldi, G. A New Methodology for Comparing IR Reflectographic Systems. Infrared Phys. Technol. 2007, 49, 249–253. [Google Scholar] [CrossRef]
- Delaney, J.K.; Trumpy, G.; Didier, M.; Ricciardi, P.; Dooley, K.A. A High Sensitivity, Low Noise and High Spatial Resolution Multi-Band Infrared Reflectography Camera for the Study of Paintings and Works on Paper. Herit. Sci. 2017, 5, 32. [Google Scholar] [CrossRef]
- Cavaleri, T.; Buscaglia, P.; Migliorini, S.; Nervo, M.; Piccablotto, G.; Piccirillo, A.; Pisani, M.; Puglisi, D.; Vaudan, D.; Zucco, M. Pictorial Materials Database: 1200 Combinations of Pigments, Dyes, Binders and Varnishes Designed as a Tool for Heritage Science and Conservation. Appl. Phys. A 2017, 123, 419. [Google Scholar] [CrossRef]
- Aldrovandi, A.; Casini, A.; Altamura, M.L.; Cianfanelli, M.T.; Riitano, P.; Cagnini, A.; Galeotti, M.; Picollo, M.; Radicati, B.; Agostini, A.; et al. (Eds.) Fiber Optics Reflectance Spectra (FORS) of Pictorial Materials in the 270–1700 nm Range, 2020th ed.; SABeC IFAC-CNR Spectral Database: Sesto Fiorentino, Italy; Available online: https://spectradb.ifac.cnr.it/fors (accessed on 10 November 2020).
- Gabrieli, F.; Delaney, J.K.; Erdmann, R.G.; Gonzalez, V.; van Loon, A.; Smulders, P.; Berkeveld, R.; van Langh, R.; Keune, K. Reflectance Imaging Spectroscopy (RIS) for Operation Night Watch: Challenges and Achievements of Imaging Rembrandt’s Masterpiece in the Glass Chamber at the Rijksmuseum. Sensors 2021, 21, 6855. [Google Scholar] [CrossRef]
- Cavaleri, T.; Pelosi, C.; Giustetto, R.; Andreotti, A.; Bonaduce, I.; Calabrò, G.; Caliri, C.; Colantonio, C.; Manchinu, P.; Legnaioli, S.; et al. The Northern-Italy Renaissance in a Panel by Defendente Ferrari: A Complete Study with a Multi-Analytical Investigation. J. Archaeol. Sci. Rep. 2022, 46, 103669. [Google Scholar] [CrossRef]
- Gargano, M.; Galli, A.; Bonizzoni, L.; Alberti, R.; Aresi, N.; Caccia, M.; Castiglioni, I.; Interlenghi, M.; Salvatore, C.; Ludwig, N.; et al. The Giotto’s Workshop in the XXI Century: Looking inside the “God the Father with Angels” Gable. J. Cult. Herit. 2019, 36, 255–263. [Google Scholar] [CrossRef]
- Gargano, M.; Bonizzoni, L.; Grifoni, E.; Melada, J.; Guglielmi, V.; Bruni, S.; Ludwig, N. Multi-Analytical Investigation of Panel, Pigments and Varnish of The Martyirdom of St. Catherine by Gaudenzio Ferrari (16th Century). J. Cult. Herit. 2020, 46, 289–297. [Google Scholar] [CrossRef]
- Daffara, C.; Ambrosini, D.; Pezzati, L.; Marchioro, G. Thermal Quasi-Reflectography (TQR): Current Research and Potential Applications. In Proceedings of the Optics for Arts, Architecture, and Archaeology IV, Munich, Germany, 15–16 May 2013; Pezzati, L., Targowski, P., Eds.; p. 87900S. [Google Scholar]
- Daffara, C.; Parisotto, S.; Mariotti, P.I.; Ambrosini, D. Dual Mode Imaging in Mid Infrared with Thermal Signal Reconstruction for Innovative Diagnostics of the “Monocromo” by Leonardo Da Vinci. Sci. Rep. 2021, 11, 22482. [Google Scholar] [CrossRef]
- Orazi, N. Mid-Wave Infrared Reflectography and Thermography for the Study of Ancient Books: A Review. Stud. Conserv. 2020, 65, 437–449. [Google Scholar] [CrossRef]
- Cavaleri, T.; Pelosi, C.; Ricci, M.; Laureti, S.; Romano, F.P.; Caliri, C.; Ventura, B.; De Blasi, S.; Gargano, M. IR Reflectography, Pulse-Compression Thermography, MA-XRF, and Radiography: A Full-Thickness Study of a 16th-Century Panel Painting Copy of Raphael. J. Imaging 2022, 8, 150. [Google Scholar] [CrossRef]
- Melada, J.; Gargano, M.; Ludwig, N. Pulsed Thermography and Infrared Reflectography: Comparative Results for Underdrawing Visualization in Paintings. Appl. Opt. 2022, 61, E33–E38. [Google Scholar] [CrossRef]
- Rosi, F.; Miliani, C.; Braun, R.; Harig, R.; Sali, D.; Brunetti, B.G.; Sgamellotti, A. Noninvasive Analysis of Paintings by Mid-infrared Hyperspectral Imaging. Angew. Chem. Int. Ed. 2013, 52, 5258–5261. [Google Scholar] [CrossRef]
- Bertani, D.; Cetica, M.; Poggi, P.; Puccioni, G.; Buzzegoli, E.; Kunzelman, D.; Cecchi, S. A Scanning Device for Infrared Reflectography. Stud. Conserv. 1990, 35, 113–116. [Google Scholar] [CrossRef]
- Peccenini, E.; Albertin, F.; Bettuzzi, M.; Brancaccio, R.; Casali, F.; Morigi, M.P.; Petrucci, F. Advanced Imaging Systems for Diagnostic Investigations Applied to Cultural Heritage. J. Phys. Conf. Ser. 2014, 566, 012022. [Google Scholar] [CrossRef]
- Consolandi, L.; Bertani, D. A Prototype for High Resolution Infrared Reflectography of Paintings. Infrared Phys. Technol. 2007, 49, 239–242. [Google Scholar] [CrossRef]
- Saunders, D.; Billinge, R.; Cupitt, J.; Atkinson, N.; Liang, H. A New Camera for High-Resolution Infrared Imaging of Works of Art. Stud. Conserv. 2006, 51, 277–290. [Google Scholar] [CrossRef]
- Cucci, C.; Delaney, J.K.; Picollo, M. Reflectance Hyperspectral Imaging for Investigation of Works of Art: Old Master Paintings and Illuminated Manuscripts. Acc. Chem. Res. 2016, 49, 2070–2079. [Google Scholar] [CrossRef]
- Apollo: World’s Leading Infrared Camera. Available online: https://www.opusinstruments.com/cameras/apollo-camera/ (accessed on 20 February 2023).
- Daffara, C.; Pampaloni, E.; Pezzati, L.; Barucci, M.; Fontana, R. Scanning Multispectral IR Reflectography SMIRR: An Advanced Tool for Art Diagnostics. Acc. Chem. Res. 2010, 43, 847–856. [Google Scholar] [CrossRef]
- Daffara, C.; Fontana, R. Multispectral Infrared Reflectography to Differentiate Features in Paintings. Microsc. Microanal. 2011, 17, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Striova, J.; Dal Fovo, A.; Fontana, R. Reflectance Imaging Spectroscopy in Heritagescience. Riv. Nuovo Cim. 2020, 43, 515–566. [Google Scholar] [CrossRef]
- Camille, S.C.; Alamin, M.; Marzani, S.F.; Boochs, F. Integration of 3D and multispectral data for cultural heritage applications: Survey and perspectives. Image Vis. Comput. 2013, 31, 91–102. [Google Scholar]
- Gargano, M.; Cavaliere, F.; Viganò, D.; Galli, A.; Ludwig, N. A New Spherical Scanning System for Infrared Reflectography of Paintings. Infrared Phys. Technol. 2017, 81, 128–136. [Google Scholar] [CrossRef]
- Gao, S.; Yang, K.; Shi, H.; Wang, K.; Bai, J. Review on Panoramic Imaging and Its Applications in Scene Understanding. IEEE Trans. Instrum. Meas. 2022, 71, 1–34. [Google Scholar] [CrossRef]
- Littlefield, R. Theory of the “No-Parallax” Point in Panorama Photography. 2006. Available online: https://www.janrik.net/PanoPostings/NoParallaxPoint/TheoryOfTheNoParallaxPoint.pdf (accessed on 23 February 2023).
- Stoica, A. Image Transformation Matrix. Available online: https://www.mathworks.com/matlabcentral/fileexchange/46053-image-transformation-matrix (accessed on 24 February 2023).
- Photo Stitching Software 360 Degree Panorama Image Software—PTGui Stitching Software. Available online: https://ptgui.com/ (accessed on 23 February 2023).
- Hugin—Panorama Photo Stitcher. Available online: https://hugin.sourceforge.io/ (accessed on 23 February 2023).
- GigaPan|High-Resolution Images|Panoramic Photography|GigaPixel Images. Available online: http://gigapan.com/ (accessed on 23 February 2023).
- Image Composite Editor. Microsoft Research. Available online: https://www.microsoft.com/en-us/research/project/image-composite-editor/ (accessed on 23 February 2023).
- Official Adobe Photoshop–Photo & Design Software. Available online: https://www.adobe.com/products/photoshop.html (accessed on 23 February 2023).
- Lyu, W.; Zhou, Z.; Chen, L.; Zhou, Y. A Survey on Image and Video Stitching. Virtual Real. Intell. Hardw. 2019, 1, 55–83. [Google Scholar] [CrossRef]
Component | Manufacturer | Model | Tech Specifics |
---|---|---|---|
Camera | Xenics™, Leuven, Belgium | Xeva-1.7-320 InGaAs camera | Sensitivity between 0.9 and 1.7 µm, 320 × 256-element array with a pixel pitch of 20 µm, and cooling system, yielding 14-bit grayscale images. |
Lens | Tamron™, Saitama, Japan | 500 mm f/8 SP macro-tele lens | Compact design considering its focal length; it has few glass elements and a minimum focal distance of approximately 1.7 m. At this distance, the optical magnification is about 3:1, which means that at a 1.7 m distance a given painting would be sampled at 560 pixels per inch at the center of the scanned area. |
Mirror | GSO™, Guan Sheng Optical, Taiwan | Elliptical mirror | The mirror surface has aluminate layer providing 94% reflectivity, mirror size 104 × 150 mm, precision 1/12 RMS, thickness 18.7 mm. |
Distance meter | Chengdu JRT Meter Technology Co., Ltd, Chengdu, China | Time-of-flight laser distance meter | Wavelength 635 nm, range 0.02–50 m, accuracy ±2 mm, power < 1 mW (class II laser). Distance is measured by measuring the time taken by the laser beam to travel a distance. Module is controlled by using a TTL/serial communication protocol. |
Motors | OSM Technology Co., Ltd., Nanjing, China | Stepper motors | Current 2A, torque 59 Ncm, each motor has different gear ratio depending on the weight to be moved. Angular resolution of all movements is 0.02°. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gargano, M.; Viganò, D.; Cavaleri, T.; Cavaliere, F.; Ludwig, N.; Pozzi, F. A Tailor-Made, Mirror-Based Infrared Scanner for the Reflectography of Paintings: Development, Features, and Applications. Sensors 2023, 23, 4322. https://doi.org/10.3390/s23094322
Gargano M, Viganò D, Cavaleri T, Cavaliere F, Ludwig N, Pozzi F. A Tailor-Made, Mirror-Based Infrared Scanner for the Reflectography of Paintings: Development, Features, and Applications. Sensors. 2023; 23(9):4322. https://doi.org/10.3390/s23094322
Chicago/Turabian StyleGargano, Marco, Daniele Viganò, Tiziana Cavaleri, Francesco Cavaliere, Nicola Ludwig, and Federica Pozzi. 2023. "A Tailor-Made, Mirror-Based Infrared Scanner for the Reflectography of Paintings: Development, Features, and Applications" Sensors 23, no. 9: 4322. https://doi.org/10.3390/s23094322