Dual-YOLO Architecture from Infrared and Visible Images for Object Detection
<p>The overall architecture of the proposed Dual-YOLO. The proposed network is mainly designed to detect weak infrared objects captured by UAVs. However, to compensate for the loss of features due to variations in light intensity, we add a visible image feature extraction branch to the network to reduce the probability of missing objects.</p> "> Figure 2
<p>Structures of the feature extraction modules in the backbone and neck. Where (<b>a</b>) is the structure of ELAN1, (<b>b</b>) is the structure of ELAN2, and (<b>c</b>) is the structure of SPPCSP. These structures remain consistent with the design in YOLOv7, where ELAN2 has essentially the same essential components as ELAN1, but ELAN2 has more channels than ELAN1 in the feature aggregation part to ensure that multi-scale feature information is aggregated in the neck. For the maxpool structure in SPPCSP, the value of k is the ratio of downsampling.</p> "> Figure 3
<p>The effect of separate detection of infrared images and visible images. <b>a(1)</b>, <b>a(2)</b>, <b>c(1)</b>, and <b>c(2)</b> are training and detection results for single visible data. <b>b(1)</b>, <b>b(2)</b>, <b>d(1)</b>, and <b>d(2)</b> are training and detection results for single infrared data. This is a collection of images taken from a drone. The images are taken during the day and night. The drone flies at altitudes of 100 m and 200 m.</p> "> Figure 4
<p>The structure of the Attention fusion module. (<b>a</b>) shows the data flow structure of the attention fusion. (<b>b</b>) shows the Inception structure in (<b>a</b>), which mainly connects the 4 branches. (<b>c</b>) shows the detailed description of the convolution structure in (<b>b</b>).</p> "> Figure 5
<p>The fusion shuffle module structure where the shuffle is performed after fusion.</p> "> Figure 6
<p>Visualization of Dual-YOLO detection results on the KAIST pedestrian dataset.</p> "> Figure 7
<p>Visualization of Dual-YOLO detection results on the FLIR dataset.</p> "> Figure 8
<p>The fusion shuffle module structure where the shuffle is performed before fusion.</p> "> Figure 9
<p>The mAP@.5:0.95 performance curve of Dual-YOLO during training. From the curves, we can see that Dual-YOLO has the highest accuracy when it adds Inception and the SE module together.</p> "> Figure 10
<p>The mAP@0.5 performance curve of Dual-YOLO during training. From the curves, we can see that Dual-YOLO has the highest accuracy when it adds Inception and the SE module together.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Overall Network Architecture
2.2. Information Fusion Module
2.2.1. Attention Fusion Module
2.2.2. Fusion Shuffle Module
2.3. Loss Function
3. Experiment and Analysis
3.1. Dataset Introduction
3.1.1. DroneVehicle Dataset
3.1.2. KAIST Dataset
3.1.3. FLIR Dataset
3.2. Implementation Details
3.3. Evaluation Metrics
3.4. Analysis of Results
3.4.1. Experiments on the DroneVehicle Remote Sensing Dataset
3.4.2. Experiments on the KAIST Pedestrian Dataset
3.4.3. Experiments on the FLIR Dataset
3.5. Ablation Study
3.5.1. Position of the Shuffle
3.5.2. Functions of the Components in the Attention Fusion Module
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016, Proceedings, Part I; Springer International Publishing: Cham, Switzerland, 2016; Volume 9905, pp. 21–37. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully convolutional one-stage object detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9626–9635. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, C.; Zhong, Y.; Gao, Y.; Scott, M.R.; Huang, W. TOOD: Task-aligned One-stage Object Detection. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV); IEEE Computer Society: Washington, DC, USA, 2021; pp. 3490–3499. [Google Scholar]
- Kong, T.; Sun, F.; Liu, H.; Jiang, Y.; Li, L.; Shi, J. Foveabox: Beyound anchor-based object detection. IEEE Trans. Image Process. 2020, 29, 7389–7398. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, J.; Su, N.; Yan, Y.; Xing, X. Low contrast infrared target detection method based on residual thermal backbone network and weighting loss function. Remote Sens. 2022, 14, 177. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Li, Y.; Li, M.; Xu, X. YOLO-FIRI: Improved YOLOv5 for Infrared Image Object Detection. IEEE Access 2021, 9, 141861–141875. [Google Scholar] [CrossRef]
- Available online: https://github.com/ultralytics/yolov5 (accessed on 20 May 2022).
- Hwang, S.; Park, J.; Kim, N.; Choi, Y.; Kweon, I.S. Multispectral pedestrian detection: Benchmark dataset and baseline. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1037–1045. [Google Scholar] [CrossRef]
- Available online: https://www.flir.com/oem/adas/adas-dataset-form (accessed on 19 January 2022).
- Sun, M.; Zhang, H.; Huang, Z.; Luo, Y.; Li, Y. Road infrared target detection with I-YOLO. IET Image Process. 2022, 16, 92–101. [Google Scholar] [CrossRef]
- Devalla, S.K.; Renukanand, P.K.; Sreedhar, B.K.; Subramanian, G.; Zhang, L.; Perera, S.; Mari, J.M.; Chin, K.S.; Tun, T.A.; Strouthidis, N.G. DRUNET: A dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images. Biomed. Opt. Express 2018, 9, 3244–3265. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Ren, H.; Ye, X.; Zhu, J.; Zeng, H.; Nan, Y.; Sun, M.; Ren, X.; Huo, H. Object detection from UAV thermal infrared images and videos using YOLO models. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102912. [Google Scholar] [CrossRef]
- Jiang, X.; Cai, W.; Yang, Z.; Xu, P.; Jiang, B. IARet: A Lightweight Multiscale Infrared Aerocraft Recognition Algorithm. Arab. J. Sci. Eng. 2022, 47, 2289–2303. [Google Scholar] [CrossRef]
- Wang, Q.; Chi, Y.; Shen, T.; Song, J.; Zhang, Z.; Zhu, Y. Improving RGB-Infrared Object Detection by Reducing Cross-Modality Redundancy. Remote Sens. 2022, 14, 2020. [Google Scholar] [CrossRef]
- Yuan, M.; Wang, Y.; Wei, X. Translation, Scale and Rotation: Cross-Modal Alignment Meets RGB-Infrared Vehicle Detection. arXiv 2022, arXiv:2209.13801. [Google Scholar]
- Wu, D.; Cao, L.; Zhou, P.; Li, N.; Li, Y.; Wang, D. Infrared Small-Target Detection Based on Radiation Characteristics with a Multimodal Feature Fusion Network. Remote Sens. 2022, 14, 3570. [Google Scholar] [CrossRef]
- Dai, X.; Yuan, X.; Wei, X. TIRNet: Object detection in thermal infrared images for autonomous driving. Appl. Intell. 2021, 51, 1244–1261. [Google Scholar] [CrossRef]
- Luo, F.; Li, Y.; Zeng, G.; Peng, P.; Wang, G.; Li, Y. Thermal infrared image colorization for nighttime driving scenes with top-down guided attention. IEEE Trans. Intell. Transp. Syst. 2022, 23, 15808–15823. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, C.; Hu, Q.; Fu, H.; Zhu, P. Confidence-aware Fusion using Dempster-Shafer Theory for Multispectral Pedestrian Detection. IEEE Trans. Multimed. 2022. [Google Scholar] [CrossRef]
- Liu, W.; Quijano, K.; Crawford, M.M. YOLOv5-Tassel: Detecting Tassels in RGB UAV Imagery with Improved YOLOv5 Based on Transfer Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8085–8094. [Google Scholar] [CrossRef]
- Sun, Y.; Cao, B.; Zhu, P.; Hu, Q. Drone-Based RGB-Infrared Cross-Modality Vehicle Detection Via Uncertainty-Aware Learning. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 6700–6713. [Google Scholar] [CrossRef]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-ResNet and the impact of residual connections on learning. Proc. Aaai Conf. Artif. Intell. 2017, 31, 4278–4284. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, B.; Miao, L.; Li, L.; Zhou, Z.; Ma, J.; Dong, D. Infrared and visible image object detection via focused feature enhancement and cascaded semantic extension. Remote Sens. 2021, 13, 2538. [Google Scholar] [CrossRef]
- Ding, J.; Xue, N.; Long, Y.; Xia, G.S.; Lu, Q. Learning RoI Transformer for Oriented Object Detection in Aerial Images. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 2844–2853. [Google Scholar] [CrossRef]
- Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable Convolutional Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 764–773. [Google Scholar] [CrossRef] [Green Version]
- Xia, G.S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A Large-Scale Dataset for Object Detection in Aerial Images. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3974–3983. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar] [CrossRef]
- Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving into High Quality Object Detection. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2242–2251. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.Y.; Breuel, T.; Kautz, J. Unsupervised image-to-image translation networks. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 701–709. [Google Scholar]
- Huang, X.; Liu, M.Y.; Belongie, S.; Kautz, J. Multimodal Unsupervised Image-to-Image Translation. In Computer Vision—ECCV 2018; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 11207, pp. 179–196. [Google Scholar] [CrossRef] [Green Version]
- Anoosheh, A.; Sattler, T.; Timofte, R.; Pollefeys, M.; Gool, L.V. Night-to-day image translation for retrieval-based localization. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 5958–5964. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, M.; Kang, H.; Lee, K. U-gat-it: Unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation. arXiv 2019, arXiv:1907.10830. [Google Scholar]
- Lee, H.Y.; Tseng, H.Y.; Mao, Q.; Huang, J.B.; Lu, Y.D.; Singh, M.; Yang, M.H. Drit++: Diverse image-to-image translation via disentangled representations. Int. J. Comput. Vis. 2020, 128, 2402–2417. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Wu, Y.; Han, X.; Shi, J. ForkGAN: Seeing into the Rainy Night. In Computer Vision—ECCV 2020; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 12348, pp. 155–170. [Google Scholar] [CrossRef]
- Devaguptapu, C.; Akolekar, N.; Sharma, M.M.; Balasubramanian, V.N. Borrow from anywhere: Pseudo multi-modal object detection in thermal imagery. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 1029–1038. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wen, L.; Bian, X.; Lei, Z.; Li, S.Z. Single-Shot Refinement Neural Network for Object Detection. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4203–4212. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Zhou, T.; Zhu, X.; Su, Y. Every Feature Counts: An Improved One-Stage Detector in Thermal Imagery. In Proceedings of the 2019 IEEE 5th International Conference on Computer and Communications (ICCC), Chengdu, China, 6–9 December 2019; pp. 1965–1969. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Y.; Yang, T.; Zhang, X.; Cheng, J.; Sun, J. You Only Look One-level Feature. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 13034–13043. [Google Scholar] [CrossRef]
Hyper-Parameter | DroneVehicle Dataset | KAIST Dataset | FLIR Dataset |
---|---|---|---|
Scenario | drone | pedestrian | adas |
Modality | R + I | R + I | R + I |
#Images | 56,878 | 95,328 | 14,000 |
Categories | 5 | 3 | 4 |
#Labels | 190.6 K | 103.1 K | 14.5 K |
Resolution | 840 × 712 | 640 × 480 | 1600 × 1800 |
Year | 2021 | 2015 | 2018 |
Category | Parameter |
---|---|
CPU Intel | i9-10920X |
GPU | RTX 3090 × 2 |
System | Ubuntu 18.04 |
Python | 3.7 |
PyTorch | 1.10 |
Training Epochs | 300 |
Learning Rate | 0.005 |
Weight Decay | 0.0001 |
Momentum | 0.9 |
Hyper-Parameter | DroneVehicle Dataset | KAIST Dataset | FLIR Dataset |
---|---|---|---|
Visible Image Size | 640 × 512 | 640 × 512 | 640 × 512 |
Infrared Image Size | 640 × 512 | 640 × 512 | 640×512 |
#Visible Image | 10,000 | 9853 | 10,228 |
#Infrared Image | 10,000 | 9853 | 10,228 |
#Training set | 9000 | 7601 | 8862 |
#Validation set | 500 | 2252 | 1366 |
#Testing set | 500 | 2252 (test-val) | 1366 (test-val) |
Method | Modality | Car | Freight Car | Truck | Bus | Van | mAP |
---|---|---|---|---|---|---|---|
RetinaNet(OBB) [28] | Visible | 67.5 | 13.7 | 28.2 | 62.1 | 19.3 | 38.2 |
Faster R-CNN(OBB) [29] | Visible | 67.9 | 26.3 | 38.6 | 67.0 | 23.2 | 44.6 |
Faster R-CNN(Dpool) [28] | Visible | 68.2 | 26.4 | 38.7 | 69.1 | 26.4 | 45.8 |
Mask R-CNN [30] | Visible | 68.5 | 26.8 | 39.8 | 66.8 | 25.4 | 45.5 |
Cascade Mask R-CNN [31] | Visible | 68.0 | 27.3 | 44.7 | 69.3 | 29.8 | 47.8 |
RoITransformer [27] | Visible | 68.1 | 29.1 | 44.2 | 70.6 | 27.6 | 47.9 |
YOLOv7 [3] | Visible | 98.2 | 41.4 | 70.5 | 97.8 | 44.7 | 68.5 |
RetinaNet(OBB) [32] | Infrared | 79.9 | 28.1 | 32.8 | 67.3 | 16.4 | 44.9 |
Faster R-CNN(OBB) [29] | Infrared | 88.6 | 35.2 | 42.5 | 77.9 | 28.5 | 54.6 |
Faster R-CNN(Dpool) [28] | Infrared | 88.9 | 36.8 | 47.9 | 78.3 | 32.8 | 56.9 |
Mask R-CNN [30] | Infrared | 88.8 | 36.6 | 48.9 | 78.4 | 32.2 | 57.0 |
Cascade Mask R-CNN [31] | Infrared | 81.0 | 39.0 | 47.2 | 79.3 | 33.0 | 55.9 |
RoITransformer [27] | Infrared | 88.9 | 41.5 | 51.5 | 79.5 | 34.4 | 59.2 |
YOLOv7 [3] | Infrared | 98.0 | 31.9 | 65.0 | 95.8 | 43.0 | 66.7 |
UA-CMDet [24] | Visible + Infrared | 87.5 | 46.8 | 60.7 | 87.1 | 38.0 | 64.0 |
Dual-YOLO (Ours) | Visible + Infrared | 98.1 | 52.9 | 65.7 | 95.8 | 46.6 | 71.8 |
Method | Precision | Recall | mAP |
---|---|---|---|
CycleGAN [33] | 4.7 | 2.8 | 1.1 |
UNIT [34] | 26.7 | 14.5 | 11.0 |
MUNIT [35] | 2.1 | 1.6 | 0.3 |
ToDayGAN [36] | 11.4 | 14.9 | 5.0 |
UGATIT [37] | 13.3 | 7.6 | 3.2 |
DRIT++ [38] | 7.9 | 4.1 | 1.2 |
ForkGAN [39] | 33.9 | 4.6 | 4.9 |
PearlGAN [21] | 21.0 | 39.8 | 25.8 |
Dual-YOLO (Ours) | 75.1 | 66.7 | 73.2 |
Method | Person | Bicycle | Car | mAP |
---|---|---|---|---|
Faster R-CNN [40] | 39.6 | 54.7 | 67.6 | 53.9 |
SSD [1] | 40.9 | 43.6 | 61.6 | 48.7 |
RetinaNet [32] | 52.3 | 61.3 | 71.5 | 61.7 |
FCOS [4] | 69.7 | 67.4 | 79.7 | 72.3 |
MMTOD-UNIT [40] | 49.4 | 64.4 | 70.7 | 61.5 |
MMTOD-CG [40] | 50.3 | 63.3 | 70.6 | 61.4 |
RefineDet [41] | 77.2 | 57.2 | 84.5 | 72.9 |
TermalDet [42] | 78.2 | 60.0 | 85.5 | 74.6 |
YOLO-FIR [9] | 85.2 | 70.7 | 84.3 | 80.1 |
YOLOv3-tiny [16] | 67.1 | 50.3 | 81.2 | 66.2 |
IARet [16] | 77.2 | 48.7 | 85.8 | 70.7 |
CMPD [22] | 69.6 | 59.8 | 78.1 | 69.3 |
PearlGAN [21] | 54.0 | 23.0 | 75.5 | 50.8 |
Cascade R-CNN [31] | 77.3 | 84.3 | 79.8 | 80.5 |
YOLOv5s [10] | 68.3 | 67.1 | 80.0 | 71.8 |
YOLOF [43] | 67.8 | 68.1 | 79.4 | 71.8 |
Dual-YOLO (Ours) | 88.6 | 66.7 | 93.0 | 84.5 |
Method | Dataset | #Params | Runtime (fps) |
---|---|---|---|
Faster R-CNN (OBB) | DroneVehicle | 58.3 M | 5.3 |
Faster R-CNN (Dpool) | DroneVehicle | 59.9 M | 4.3 |
Mask R-CNN | DroneVehicle | 242.0 M | 13.5 |
RetinaNet | DroneVehicle | 145.0 M | 15.0 |
Cascade Mask R-CNN | DroneVehicle | 368.0 M | 9.8 |
RoITransformer | DroneVehicle | 273.0 M | 7.1 |
YOLOv7 | DroneVehicle | 72.1 M | 161.0 |
SSD | FLIR | 131.0 M | 43.7 |
FCOS | FLIR | 123.0 M | 22.9 |
RefineDet | FLIR | 128.0 M | 24.1 |
YOLO-FIR | FLIR | 7.1 M | 83.3 |
YOLOv3-tiny | FLIR | 17.0 M | 50.0 |
Cascade R-CNN | FLIR | 165.0 M | 16.1 |
YOLOv5s | FLIR | 14.0 M | 41.0 |
YOLOF | FLIR | 44.0 M | 32.0 |
Dual-YOLO | DroneVehicle/FLIR | 175.1 M | 62.0 |
Method | Person | Bicycle | Car | mAP |
---|---|---|---|---|
without shuffle | 87.2 | 63.6 | 92.6 | 81.1 |
shuffle before fusion | 88.0 | 68.6 | 92.9 | 83.2 |
shuffle after fusion | 88.6 | 66.7 | 93.0 | 84.5 |
Inception | SE | Person | Bicycle | Car | [email protected] | [email protected]:0.95 |
---|---|---|---|---|---|---|
✘ | ✘ | 85.1 | 64.5 | 89.4 | 79.7 | 41.6 |
✔ | ✘ | 86.9 | 69.0 | 91.6 | 82.5 | 44.3 |
✘ | ✔ | 86.2 | 65.7 | 91.4 | 81.1 | 43.3 |
✔ | ✔ | 88.6 | 66.7 | 93.0 | 84.5 | 46.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, C.; Cao, J.; Hao, Q.; Cheng, Y.; Ning, Y.; Zhao, T. Dual-YOLO Architecture from Infrared and Visible Images for Object Detection. Sensors 2023, 23, 2934. https://doi.org/10.3390/s23062934
Bao C, Cao J, Hao Q, Cheng Y, Ning Y, Zhao T. Dual-YOLO Architecture from Infrared and Visible Images for Object Detection. Sensors. 2023; 23(6):2934. https://doi.org/10.3390/s23062934
Chicago/Turabian StyleBao, Chun, Jie Cao, Qun Hao, Yang Cheng, Yaqian Ning, and Tianhua Zhao. 2023. "Dual-YOLO Architecture from Infrared and Visible Images for Object Detection" Sensors 23, no. 6: 2934. https://doi.org/10.3390/s23062934