Extremely Efficient DFB Lasers with Flat-Top Intra-Cavity Power Distribution in Highly Erbium-Doped Fibers
<p>Schematic of propagating pump and signal in an EDF-DFB laser with an FBG cavity length of <span class="html-italic">L</span>. <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>p</mi> </msub> </mrow> </semantics></math> and (<span class="html-italic">a</span><sup>+</sup>, <span class="html-italic">a</span><sup>−</sup>) are the pump and signal amplitudes, respectively.</p> "> Figure 2
<p>(<b>a</b>) Efficiency vs. signal power for various pump powers considering a loss of 0.1 dB/m. Blue dotted line connects the circles representing the maximum efficiencies for each curve. (<b>b</b>) Optimum efficiency vs. pump power for two amounts of loss. The inset shows the optimum intra-cavity signal power vs. pump power.</p> "> Figure 3
<p>Distribution of <span class="html-italic">SA<sub>eff</sub></span> and <span class="html-italic">DA<sub>eff</sub></span> and <span class="html-italic">P<sub>p</sub></span> as a function of EDF-DFB length for a pump power of 150 mW and a loss of 0.3 dB/m, resulting in <span class="html-italic">S = D</span> at 18 cm. Note, the intra-cavity power distribution (in red) is nearly flat. The inset shows the coupling coefficient distribution over the 18-cm-long EDF-DFB. Coupling coefficient is very large at <span class="html-italic">z</span> = 0 due to the full unidirectionality assumption. The zero crossing, i.e., PPS occurs at 1.9 cm.</p> "> Figure 4
<p>Contour maps for (<b>a</b>) optimum cavity length, (<b>b</b>) maximum FS output power, (<b>c</b>) maximum intra-cavity signal power, and (<b>d</b>) quality factor, considering various pump power and fiber background loss.</p> "> Figure 5
<p>(<b>a</b>) Modified distribution of <span class="html-italic">SA<sub>eff</sub></span> and <span class="html-italic">DA<sub>eff</sub></span> and <span class="html-italic">P<sub>p</sub></span> as a function of EDF-DFB length for a pump power of 150 mW and a loss of 0.3 dB/m. An exponential distribution for <span class="html-italic">S</span> is considered before PPS position at 1.9 cm, and the realistic non-zero NS output power is assumed to be as low as 10 µW. (<b>b</b>) Modified coupling coefficient vs. length for an 18-cm-long DFB with a maximum coupling of 234 m<sup>−1</sup>. The inset shows the gain vs. the DFB length.</p> "> Figure 6
<p>Output power vs. input pump power for three designs considering three various loss parameters of 0.1, 0.3, and 0.5 dB/m and the same optimum length of 18 cm. The insets show the modified coupling coefficient distributions vs. the 18-cm-long DFB for a loss of (top) 0.1 dB/m and (down) 0.5 dB/m for which (maximum coupling-coefficient, PPS position) are (261 m<sup>−1</sup>, 1.7 cm) and (221 m<sup>−1</sup>, 2 cm), respectively. For a loss of 0.3 dB/m, <math display="inline"><semantics> <mrow> <mi>κ</mi> <mfenced> <mi>z</mi> </mfenced> </mrow> </semantics></math> has been shown in <a href="#sensors-23-01398-f005" class="html-fig">Figure 5</a>b.</p> ">
Abstract
:1. Introduction
2. Ideal DFB Design for Full Unidirectionality
3. Realistic DFB Design for Strong Unidirectionality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kashyap, R. Fiber Bragg Gratings, 2nd ed.; Academic Press: New York, NY, USA, 2010. [Google Scholar]
- Canning, J.; Sceats, M.G. π-phase shifted periodic distributed structures in optical fibers by UV post-processing. Electron. Lett. 1994, 30, 1244–1245. [Google Scholar]
- Loh, W.H.; Laming, R.I. 1.55 μm phase-shifted distributed feedback fiber laser. Electron. Lett. 1995, 31, 1440–1442. [Google Scholar] [CrossRef]
- Sejka, M.; Varming, P.; Haiibner, J.; Kristensen, M. Distributed feedback Er+3 doped fibre laser. Electron. Lett. 1995, 31, 1445–1446. [Google Scholar] [CrossRef]
- Lauridsen, V.C.; Povlsen, J.H.; Varming, P. Design of DFB fiber lasers. Electron. Lett. 1998, 34, 2028–2030. [Google Scholar] [CrossRef]
- Babin, S.A.; Churkin, D.V.; Ismagulov, A.E.; Kablukov, S.I.; Nikulin, M.A. Single frequency single polarization DFB fiber laser. Laser Phys. Lett. 2007, 4, 428–432. [Google Scholar] [CrossRef]
- Skvortsov, M.I.; Wolf, A.A.; Dostovalov, A.V.; Vlasov, A.A.; Akulov, V.A.; Babin, S.A. Distributed feedback fiber laser based on a fiber Bragg grating inscribed using the femtosecond point-by-point technique. Laser Phys. Lett. 2018, 15, 035103. [Google Scholar] [CrossRef]
- Guo, K.; He, J.; Yang, K.; Zhang, Z.; Xu, X.; Du, B.; Xu, G.; Wang, Y. Symmetric step-apodized distributed feedback fiber laser with improved efficiency. IEEE J. Photonics 2019, 11, 1–11. [Google Scholar] [CrossRef]
- Tehranchi, A.; Kashyap, R. Performance improvement of ultra-short Distributed feedback fiber lasers by engineering of coupling coefficient profiles. IEEE J. Quantum Electron. 2022, 58, 1–7. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, D.; Tu, Y.; Pi, L.; Li, H.; Xu, L.; Hu, Z.; Shen, Y.; Yu, B.; Lu, L. Coherent laser detection of the femtowatt-level frequency-shifted optical feedback based on a DFB fiber laser. Opt. Lett. 2021, 46, 1229–1232. [Google Scholar] [CrossRef]
- Ying, K.; Liang, H.; Chen, D.; Sun, Y.; Pi, H.Y.; Wei, F.; Yang, F.; Cai, H. Ultralow noise DFB fiber laser with self-feedback mechanics utilizing the inherent photothermal effect. Opt. Express 2020, 28, 23717–23727. [Google Scholar] [CrossRef] [PubMed]
- Cranch, G.; Flockhart, G.H.; Kirkendall, C. Distributed feedback fiber laser strain sensors. IEEE Sens. J. 2008, 8, 1161–1172. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, W.; Li, F. Acoustic emission source location using a distributed feedback fiber laser rosette. Sensors 2013, 13, 14041–14054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, S.B.; Cranch, G.A.; Harrison, J.; Tikhomirov, A.E.; Miller, G.A. Distributed feedback fiber laser strain sensor technology. J. Lightw. Technol. 2017, 35, 3514–3530. [Google Scholar] [CrossRef]
- Kringlebotn, J.T.; Archambault, J.L.; Reekie, L.; Payne, D.N. Er3+Yb3+ codoped fiber distributed-feedback laser. Opt. Lett. 1994, 19, 2101–2103. [Google Scholar] [CrossRef]
- Asseh, A.; Storoy, H.; Kringlebotn, J.T.; Margulis, W.; Sahlgren, B.; Sandgren, S.; Stubbe, R.; Edwall, G. 10 cm Yb3+ DFB fibre laser with permanent phase shifted grating. Electron. Lett. 1995, 31, 969–970. [Google Scholar] [CrossRef]
- Digonnet, M.J.F. Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed.; Revised and Expanded; Taylor & Francis: New York, NY, USA, 2001. [Google Scholar]
- Spiegelberg, C.; Geng, J.; Hu, Y.; Kaneda, Y.; Jiang, S.; Peyghambarian, N. Low-noise narrow-linewidth fiber laser at 1550 nm. J. Light. Technol. 2004, 22, 57–62. [Google Scholar] [CrossRef]
- Xu, S.H.; Yang, Z.M.; Liu, T.; Zhang, W.N.; Feng, Z.M.; Zhang, Q.Y. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 μm. Opt. Express 2010, 18, 1249–1254. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, J.; Alam, S.-U.; Alvarez-Chavez, J.A.; Turner, P.W.; Clarkson, W.A.; Grudinin, A.B. High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber lasers. IEEE J. Quantum Electron. 2003, 39, 987–994. [Google Scholar] [CrossRef]
- Sobon, G.; Kaczmarek, P.; Antonczak, A.; Sotor, J.; Abramski, K.M. Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers. Opt. Express 2011, 19, 19104–19113. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Shi, J.; Yu, Y.; Feng, X. All-fiber 1.55 µm erbium-doped distributed-feedback laser with single-polarization, single-frequency output by femtosecond laser line-by-line direct-writing. OSA Contin. 2021, 4, 334–344. [Google Scholar] [CrossRef]
- Skvortsov, M.I.; Wolf, A.A.; Vlasov, A.A. Advanced distributed feedback lasers based on composite fiber heavily doped with erbium ions. Sci. Rep. 2020, 10, 14487. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; He, J.; Xu, G.; Wang, Y. Dual-polarization distributed feedback fiber laser sensor based on femtosecond laser-inscribed in-Fiber stressors for simultaneous strain and temperature measurements. IEEE Access 2020, 8, 97823–97829. [Google Scholar] [CrossRef]
- Guo, K.; He, J.; Cao, S.; Hou, M.; Zhang, Z.; Xu, G.; Wang, Y. Beat frequency tuning in dual-polarization distributed feedback fiber laser using side polishing technique. Opt. Express 2018, 26, 34699–34710. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yan, F.; Peng, W.; Feng, T.; Feng, S.; Tan, S.; Liu, P.; Ren, W. DFB laser based on single mode large effective area heavy concentration EDF. Opt. Express 2012, 20, 23684–23689. [Google Scholar] [CrossRef] [PubMed]
- Bazakutsa, A.P.; Rybaltovsky, A.A.; Butov, O.V. Effect of hydrogen loading and UV irradiation on the gain of Er3+-doped fibers. J. Opt. Soc. Am. B 2019, 36, 2579–2586. [Google Scholar] [CrossRef]
- Tehranchi, A.; Loranger, S.; Kashyap, R. Engineered π-phase-shifted fiber Bragg gratings for efficient distributed feedback Raman fiber lasers. IEEE J. Quantum Electron. 2018, 54, 1600307. [Google Scholar] [CrossRef]
- Nechepurenko, I.A.; Dorofeenko, A.V.; Butov, O.V. Optimal defect position in a DFB fiber laser. Opt. Express 2021, 29, 13657–13668. [Google Scholar] [CrossRef]
- Yelen, K.; Zervas, M.N.; Hickey, L.M.B. Fiber DFB lasers with ultimate efficiency. IEEE J. Light. Technol. 2005, 32, 32–43. [Google Scholar]
- Tehranchi, A.; Kashyap, R. Gratings with longitudinal variations in coupling coefficients: Super-efficiency and unidirectionality in distributed feedback Raman fiber lasers. New J. Phys. 2020, 22, 103022. [Google Scholar] [CrossRef]
- Loranger, S.; Tehranchi, A.; Winful, H.; Kashyap, R. Optimization and realization of phase-shifted distributed feedback fiber Bragg grating Raman lasers. Optica 2018, 5, 295–302. [Google Scholar] [CrossRef]
- Kremp, T.; Abedin, K.S.; Westbrook, P.S. Closed-form approximations to the threshold quantities of distributed-feedback lasers with varying phase shifts and positions. IEEE J. Quantum Electron. 2013, 49, 281–292. [Google Scholar] [CrossRef]
- Carroll, J.; Whiteaway, J.; Plumb, D. Distributed Feedback Semiconductor Lasers; The Institution of Electrical Engineers: London, UK, 1998. [Google Scholar]
- Thyagarajan, K.; Ghatak, A. Lasers Fundamentals and Applications, 2nd ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Ghatak, A.; Thyagarajan, K. An Introduction to Fiber Optics; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- LIEKKI®Er110-4/125. Available online: https://www.nlight.net/optical-fibers-products/liekki-er110-4/125 (accessed on 25 January 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tehranchi, A.; Kashyap, R. Extremely Efficient DFB Lasers with Flat-Top Intra-Cavity Power Distribution in Highly Erbium-Doped Fibers. Sensors 2023, 23, 1398. https://doi.org/10.3390/s23031398
Tehranchi A, Kashyap R. Extremely Efficient DFB Lasers with Flat-Top Intra-Cavity Power Distribution in Highly Erbium-Doped Fibers. Sensors. 2023; 23(3):1398. https://doi.org/10.3390/s23031398
Chicago/Turabian StyleTehranchi, Amirhossein, and Raman Kashyap. 2023. "Extremely Efficient DFB Lasers with Flat-Top Intra-Cavity Power Distribution in Highly Erbium-Doped Fibers" Sensors 23, no. 3: 1398. https://doi.org/10.3390/s23031398