A Digital Architecture for the Real-Time Tracking of Wearing off Phenomenon in Parkinson’s Disease
<p>Overall architecture of the Wearing Off (WO) detector, considering an implementation of the heterogeneous computing platform by [<a href="#B6-sensors-22-09753" class="html-bibr">6</a>]. The here-proposed approach implements on a Field Programmable Gate Array (FPGA) the feature extraction phase concerning the diagnostic indexes from muscles and brain, via Movement Related Potentials (MRP) as in [<a href="#B6-sensors-22-09753" class="html-bibr">6</a>]. The classification phase is instead entrusted to the device microcontroller (μC).</p> "> Figure 2
<p>Bar chart for selected muscular features. Bar values identify the mean value for the considered parameter. Error bar limits represent the 95th percentile (upper bound) and 5th percentile (lower bound). LG_TA is the co-contraction time (ms) between Lateral Gatrocnemius (LG) and Tibialis Anterior (TA), RF_BF identifies the co-contraction time (ms) between Rectus Femoris (RF) and Bicep Femoris (BF) regardless the involved side.</p> "> Figure 3
<p>Boxplot representation of the Testing (blue boxplot) and Training (red boxplot) Set features distribution. The middle line of the boxplot represents the median value of the distribution, upper and lower boundaries of the boxplot are respectively the 75<sup>th</sup> and the 25<sup>th</sup> percentile of the considered sample. The upper and lower limits of the bar are the maximum and minimum adjacent, while the circles denote outliers. LG_TA identifies the co-contraction time (ms) between Lateral Gatrocnemius (LG) and Tibialis Anterior (TA), similarly, RF_BF concerns Rectus Femoris (RF) and Bicep Femoris (BF) muscles regardless of the involved side.</p> "> Figure 4
<p>Shallow Learning Classification model performances: Confusion matrix, Receiver Operating Characteristic (ROC) curves and Area Under Curve (AUC) parameter. The positive class selected for the reported computation is the OFF phenomenon of Wearing Off (WO). The red dot on the ROC denotes the selected and analyzed classifier, minimizing the distance among the True Positive Rate (TPR) and False Positive Rate (FPR) values of the ROC curve and {FPR, TPR} = {0,1}.</p> "> Figure 5
<p>Deep Learning Classification model performances: Confusion matrix, Receiver Operating Characteristic (ROC) curves and Area Under Curve (AUC) parameter. The positive class selected for the reported computation is the OFF phenomenon of Wearing Off (WO). The red dot on the ROC denotes the selected and analyzed classifier, minimizing the distance among the True Positive Rate (TPR) and False Positive Rate (FPR) values of the ROC curve and {FPR, TPR} = {0,1}.</p> ">
Abstract
:1. Introduction
2. Related Works
3. Overall Architecture
3.1. Sensing System
3.2. Muscular and Cortical Indexes Extraction
- Stride time. The time between two-foot plant strikes (Initial Simple Support in Stance Phase) of the same leg. The parameter is expressed in milliseconds (resolution 2 ms).
- Contraction and Relaxation times. Contraction/relaxation duration in milliseconds (resolution 2 ms). Data are extracted at the end of the stride to complete a gait cycle.
- Duty cycle (DC). The ratio between single muscle contraction time and stride time.
- Co-contraction time. Time of parallel contraction of agonist and antagonist muscle (resolution 2 ms).
- Bereitschafts potential (BP). It presents as a positive component that peaks at 100–200 ms before the onset of movement. It is assessed in the frequency band ranges between 2 and 5 Hz.
- μ-rhythm. Detectable in a frequency band between 9 and 11 Hz and 400–500 ms before performing a motor action. The μ-rhythm suppresses when movement onset occurs.
- β-rhythm. This rhythm reveals in the frequency range of 12–30 Hz.
3.3. Statistical Significance–Based Feature Selection
3.4. Classification Model
- Tuner: Hyperband [27]
- NN Type: Fully Connected Neural Network
- Number of Layers (excluding the output): 1–3
- Number of units/layer: 8, 16, 32, 64 (pow of 2 for parallel optimization)
- Activation function: Rectified Linear Unit (ReLU), Scaled Exponential Linear (SeLU), Tanh
- Objective: Average Validation Loss (k-fold Validation with k = 4) → Loss function: Binary Crossentropy
- Compilation setting—Optimizer: Nadam [28], RMSProp
4. Results
4.1. Datasets
4.2. WO Tracker Performance
4.2.1. Population Distribution
4.2.2. Performance Metrics
4.3. WO Tracker Timing
4.4. WO Tracker Complexity
4.5. WO Tracker Power Consumption
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, Y.E.; Jeon, B.; Yun, J.Y.; Yang, H.J.; Kim, H.J. Chronological View of Peak and Diphasic Dyskinesia, Wearing off and Freezing of Gait in Parkinson’s Disease. J. Park. Dis. 2019, 9, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Stacy, M.; Bowron, A.; Guttman, M.; Hauser, R.; Hughes, K.; Larsen, j.; LeWitt, P.; Oertel, W.; Quinn, N.; Sethi, K.; et al. Identification of motor and nonmotor wearing-off in Parkinson’s disease: Comparison of a patient questionnaire versus a clinician assessment. Mov. Disord. Off. J. Mov. Disord. Soc. 2005, 20, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Farzanehfar, P.; Woodrow, H.; Horne, M. Assessment of Wearing Off in Parkinson’s disease using objective measurement. J. Neurol. 2021, 268, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Antonini, A.; Martinez-Martin, P.; Chaudhuri, R.K.; Merello, M.; Hauser, R.; Katzenschlager, R.; Odin, P.; Stacy, M.; Stocchi, F.; Poewe, W.; et al. Wearing-off scales in Parkinson’s disease: Critique and recommendations. Mov. Disord. 2011, 26, 2169–2175. [Google Scholar] [CrossRef] [PubMed]
- Woodrow, H.; Horne, M.K.; Fernando, C.V.; Kotschet, K.E.; Treat to Target Study Group. A blinded, controlled trial of objective measurement in Parkinson’s disease. Npj Park. Dis. 2020, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- De Venuto, D.; Annese, V.F.; Mezzina, G.; Defazio, G. FPGA-Based Embedded Cyber-Physical Platform to Assess Gait and Postural Stability in Parkinson’s Disease. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 1167–1179. [Google Scholar] [CrossRef]
- Cimolin, V.; Vismara, L.; Ferraris, C.; Amprimo, G.; Pettiti, G.; Lopez, R.; Galli, M.; Cremascoli, R.; Sinagra, S.; Mauro, A.; et al. Computation of Gait Parameters in Post Stroke and Parkinson’s Disease: A Comparative Study Using RGB-D Sensors and Optoelectronic Systems. Sensors 2022, 22, 824. [Google Scholar] [CrossRef]
- De Venuto, D.; Stikvoort, E.; Tio Castro, D.; Ponomarev, Y. Ultra low-power 12-bit SAR ADC for RFID applications. In Proceedings of the 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 8–12 March 2010; IEEE: Piscataway Township, NJ, USA, 2010. [Google Scholar]
- Pahwa, R.; Isaacso, S.H.; Torres-Russott, D.; Naha, F.B.; Lynch, P.M.; Kotschet, K.E. Role of the Personal KinetiGraph in the routine clinical assessment of Parkinson’s disease: Recommendations from an expert panel. Expert Rev. Neurother. 2018, 18, 669–680. [Google Scholar] [CrossRef]
- Pursiainen, V.; Korpelainen, J.T.; Haapaniemi, T.H.; Sotaniemi, K.A.; Myllylä, V.V. Blood pressure and heart rate in parkinsonian patients with and without wearing-off. Eur. J. Neurol. 2007, 14, 373–378. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, R.; Qi, D.; Xie, J.; Cao, J.; Liao, W.-H. Wearable gait monitoring for diagnosis of neurodegenerative diseases. Measurement 2022, 202, 111839. [Google Scholar] [CrossRef]
- Mazzetta, I.; Zampogna, A.; Suppa, A.; Gumiero, A.; Pessione, M.; Irrera, F. Wearable Sensors System for an Improved Analysis of Freezing of Gait in Parkinson’s Disease Using Electromyography and Inertial Signals. Sensors 2019, 19, 948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Victorino, J.N.; Shibata, Y.; Inoue, S.; Shibata, T. Predicting Wearing-Off of Parkinson’s Disease Patients Using a Wrist-Worn Fitness Tracker and a Smartphone: A Case Study. Appl. Sci. 2021, 11, 7354. [Google Scholar] [CrossRef]
- Ijima, Y.; Furudate, Y.; Chiba, K.; Ishida, Y.; Mikami, S. Automated Recognition of Off Phenomenon in Parkinson’s Disease During Walking: Measurement in Daily Life with Wearable Device. In Proceedings of the 2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech), Osaka, Japan, 7–9 March 2022; IEEE: Piscataway Township, NJ, USA, 2022; pp. 273–275. [Google Scholar]
- Pierce, A.; Ignasiak, N.; Eiteman-Pang, W.K.; Rakovski, C.; Berardi, V. Mobile phone sensors can discern medication-related gait quality changes in Parkinson’s patients in the home environment. Comput. Methods Programs Biomed. Update 2021, 1, 100028. [Google Scholar] [CrossRef]
- Ghoraani, B.; Hssayeni, M.D.; Bruack, M.M.; Jimenez-Shahed, J. Multilevel Features for Sensor-Based Assessment of Motor Fluctuation in Parkinson’s Disease Subjects. IEEE J. Biomed. Health Inform. 2020, 24, 1284–1295. [Google Scholar] [CrossRef] [PubMed]
- Moradi, H.; Roth, N.; Seifer, A.; Eskofier, B.M. Detection of distorted gait and wearing-off phenomenon in Parkinson’s disease patients during Levodopa therapy. In Proceedings of the 2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), Ioannina, Greece, 27–30 September 2022; pp. 01–04. [Google Scholar] [CrossRef]
- Kilinçalp, G.; Sjöström, A.-C.; Eriksson, B.; Holmberg, B.; Constantinescu, R.; Bergquist, F. Predictive Value of Ambulatory Objective Movement Measurement for Outcomes of Levodopa/Carbidopa Intestinal Gel Infusion. J. Pers. Med. 2022, 12, 27. [Google Scholar] [CrossRef] [PubMed]
- Lubik, S.; Fogel, W.; Tronnier, V.; Krause, M.; König, J.; Jost, W.H. Gait analysis in patients with advanced Parkinson disease: Different or additive effects on gait induced by levodopa and chronic STN stimulation. J. Neural Transm. 2006, 113, 163–173. [Google Scholar] [CrossRef] [PubMed]
- PKG by Global Kinetics CorporationTM. Available online: https://pkgcare.com/healthcare-professionals/ (accessed on 26 September 2022).
- Annese, V.F.; De Venuto, D. Fall-risk assessment by combined movement related potentials and co-contraction index monitoring. In Proceedings of the 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), Atlanta, GA, USA, 22–24 October 2015; pp. 1–4. [Google Scholar]
- de Tommaso, M.; Vecchio, E.; Ricci, K.; Montemurno, A.; De Venuto, D.; Annese, V.F. Combined EEG/EMG evaluation during a novel dual task paradigm for gait analysis. In Proceedings of the 2015 6th International Workshop on Advances in Sensors and Interfaces (IWASI), Gallipoli, Italy, 18–19 June 2015; pp. 181–186. [Google Scholar] [CrossRef]
- De Venuto, D.; Tio Castro, D.; Ponomarev, Y.; Stikvoort, E. Low power 12-bit SAR ADC for autonomous wireless sensors network interface. In Proceedings of the 2009 3rd International Workshop on Advances in sensors and Interfaces (IWASI), Trani, Italy, 25–26 June 2009; IEEE: Piscataway Township, NJ, USA, 2009. [Google Scholar]
- Kornhuber, H.H.; Deecke, L. Brain potential changes in voluntary and passive movements in humans: Readiness potential and reafferent potentials. Pflügers Arch.—Eur. J. Physiol. 2016, 468, 1115–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vassar, S.D.; Bordelon, Y.M.; Hays, R.D.; Diaz, N.; Rausch, R.; Mao, C.; Vickrey, B.G. Confirmatory factor analysis of the motor unified Parkinson’s disease rating scale. Park. Dis. 2012, 2012, 1–10. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, T.; Bursztein, E.; Long, J.; Chollet, F.; Haifeng Jin, L.I.; Invernizzi, L. Keras Tuner. 2019. Available online: https://github.com/keras-team/keras-tuner (accessed on 1 November 2022).
- Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 2017, 18, 6765–6816. [Google Scholar]
- Cheng, C.; Wang, Z.; Fan, Y.; Zhang, X.; Li, D.; Lu, Q. Nesterov Adam Iterative Fast Gradient Method for Adversarial Attacks. In International Conference on Artificial Neural Networks; Springer: Cham, Switzerland, 2022. [Google Scholar]
- De Venuto, D.; Mezzina, G. Multisensing System for Parkinson’s Disease Stage Assessment Based on FPGA-Embedded Serial SVM Classifier. IEEE Des. Test 2021, 38, 44–51. [Google Scholar] [CrossRef]
Feature | μPre | μPost | p |
---|---|---|---|
Stride Time (ms) | 1081.09 | 1044.64 | <0.001 |
Co-Con. LG-TA (ms) 1 | 113.74 | 106.16 | <0.001 |
Co-Con. BF-RF (ms) 1 | 232.51 | 228.02 | <0.001 |
DC LG (%) | 24.78 | 24.34 | <0.001 |
DC TA (%) | 63.48 | 63.49 | 0.44 |
DC BF (%) | 23.31 | 23.54 | <0.001 |
DC RF (%) | 56.29 | 57.49 | <0.001 |
BP | μ | β T4 (dBμ) 2 | 61.97 | 47.97 | 40.50 | 62.00 | 48.03 | 40.49 | 0.26 | 0.07 | 0.31 |
BP | μ | β T3 (dBμ) 2 | 60.49 | 48.02 | 40.00 | 60.47 | 48.04 | 39.99 | 0.21 | 0.34 | 0.32 |
BP | μ | β C4 (dBμ) 2 | 59.50 | 46.99 | 40.97 | 59.47 | 47.01 | 41.00 | 0.20 | 0.41 | 0.25 |
BP | μ | β C3 (dBμ) 2 | 61.51 | 48.96 | 42.51 | 61.50 | 49.02 | 42.51 | 0.34 | 0.08 | 0.49 |
BP | μ | β Cz (dBμ) 2 | 62.50 | 49.52 | 37.49 | 62.51 | 49.53 | 37.49 | 0.36 | 0.40 | 0.49 |
BP | μ | β P4 (dBμ) 2 | 63.02 | 48.51 | 44.03 | 63.01 | 48.47 | 44.02 | 0.38 | 0.16 | 0.40 |
BP | μ | β P3 (dBμ) 2 | 63.02 | 48.47 | 43.98 | 63.00 | 48.48 | 43.97 | 0.36 | 0.37 | 0.39 |
Classifier Model | Note | Acronym |
---|---|---|
Tree | Number of split *: 129, Split criterion *: Gini’ s diversity index | n.a. |
Discriminant | Discriminant Type *: Quadratic | QD |
Support Vector Machine | Kernel Function: Linear † | SVM |
k-Nearest Neighbors | Number of neighbors *: 21 Distance metric *: City block Distance weight *: Equal | KNN |
NN #1 | Number of Layers: 3 Number of units/layer 1,2,3: 32 Activation function layer 1,2,3: ReLU Input Layer: Batch Normalization Output Layer: 1 unit + Sigmoid | DNN1 |
NN #2 | Number of Layers: 2 Number of units/layer 1,2: 32 Activation function layer 1,2: ReLU Input Layer: Batch Normalization Output Layer: 1 unit + Sigmoid | DNN2 |
NN #3 | Number of Layers: 2 Number of units/layer 1,2,3: 32 Activation function layer 2,3: Tanh Activation function layer 2,3: ReLU Input Layer: Batch Normalization Output Layer: 1 unit + Sigmoid | DNN3 |
NN #4 | Number of Layers: 1 Number of units/layer: 32 Activation function: ReLU Optimizer: RMSProp Input Layer: Batch Normalization Output Layer: 1 unit + Sigmoid | DNN4 |
Dataset | Description | Observations |
---|---|---|
Training Set | n = 2 randomly selected patients mild PD + n = 1 randomly selected patient with severe PD | Pre L-dopa: 3600 steps Post L-dopa: 3600 steps |
Testing Set | n = 1 randomly selected patient mild PD + n = 1 randomly selected patient with severe PD | Pre L-dopa: 2400 steps Post L-dopa: 2400 steps |
Classifier | Accuracy | Recall | Precision | F1-score | AUC |
---|---|---|---|---|---|
Tree * | 86.79 | 79.58 | 92.98 | 85.76 | 0.92 |
QD * | 76.50 | 68.58 | 81.48 | 74.48 | 0.84 |
SVM * | 70.29 | 62.25 | 74.18 | 67.69 | 0.77 |
KNN * | 82.31 | 71.79 | 90.92 | 80.23 | 0.91 |
DNN1 | 83.04 | 80.87 | 84.53 | 82.66 | 0.91 |
DNN2 | 84.33 | 81.33 | 86.52 | 83.84 | 0.91 |
DNN3 | 81.48 | 81.04 | 81.76 | 81.40 | 0.90 |
DNN4 | 83.72 | 80.04 | 86.41 | 83.11 | 0.91 |
Ref., Year | Accuracy | Sensitivity (Recall) | Specificity |
---|---|---|---|
[15], 2021 | RGLM: 72.4 NN: 80.2 RF: 86.8 | RGLM: 88 NN: 93 RF: 97 | RGLM: 78 NN: 81 RF: 93 |
[16], 2020 | Best: 83.56 | Best: 78.51 | Best: 92.02 |
[17], 2022 | 77.04 | 77.04 | n.a. |
This work (Tree) | 86.79 | 79.58 | 93.99 |
This work (DNN1) | 83.04 | 80.87 | 85.20 |
This work (DNN2) | 84.33 | 81.33 | 87.33 |
This work (DNN3) | 81.48 | 81.04 | 81.92 |
This work (DNN4) | 83.72 | 80.04 | 87.41 |
Classifier | RAM (kB) | Flash (kB) | MACC |
---|---|---|---|
DNN1 | 3.13 | 9.30 | 2487 |
DNN2 | 3.13 | 5.18 | 1399 |
DNN3 | 3.13 | 9.30 | 2775 |
DNN4 | 3.13 | 1.05 | 311 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mezzina, G.; De Venuto, D. A Digital Architecture for the Real-Time Tracking of Wearing off Phenomenon in Parkinson’s Disease. Sensors 2022, 22, 9753. https://doi.org/10.3390/s22249753
Mezzina G, De Venuto D. A Digital Architecture for the Real-Time Tracking of Wearing off Phenomenon in Parkinson’s Disease. Sensors. 2022; 22(24):9753. https://doi.org/10.3390/s22249753
Chicago/Turabian StyleMezzina, Giovanni, and Daniela De Venuto. 2022. "A Digital Architecture for the Real-Time Tracking of Wearing off Phenomenon in Parkinson’s Disease" Sensors 22, no. 24: 9753. https://doi.org/10.3390/s22249753