Repeatability of the Vibroarthrogram in the Temporomandibular Joints
<p>Exemplary VAG signal for (<b>a</b>) asymptomatic and (<b>b</b>) symptomatic temporomandibular joints.</p> "> Figure 2
<p>Sensors and their placement on the subject’s joints.</p> "> Figure 3
<p>Box plots of <span class="html-italic">raw</span> features: (<b>a</b>) TI feature, (<b>b</b>) IB3 feature, (<b>c</b>) IA3 feature, (<b>d</b>) IBAR feature, (<b>e</b>) PA feature, (<b>f</b>) PF feature, (<b>g</b>) MF feature.</p> "> Figure 4
<p>Boxplots of the <span class="html-italic">norm1</span> features: (<b>a</b>) TI feature, (<b>b</b>) IB3 feature, (<b>c</b>) IA3 feature, (<b>d</b>) IBAR feature, (<b>e</b>) PA feature, (<b>f</b>) PF feature, (<b>g</b>) MF feature.</p> "> Figure 5
<p>Box plots of <span class="html-italic">norm2</span> features: (<b>a</b>) TI feature, (<b>b</b>) IB3 feature, (<b>c</b>) IA3 feature, (<b>d</b>) IBAR feature, (<b>e</b>) PA feature, (<b>f</b>) PF feature, (<b>g</b>) MF feature.</p> "> Figure A1
<p>Box plots of <span class="html-italic">raw</span> features obtained for the first measurement: (<b>a</b>) TI feature, (<b>b</b>) IB3 feature, (<b>c</b>) IA3 feature, (<b>d</b>) IBAR feature, (<b>e</b>) PA feature, (<b>f</b>) PF feature, (<b>g</b>) MF feature.</p> "> Figure A2
<p>Box plots of <span class="html-italic">raw</span> features obtained for the second measurement: (<b>a</b>) TI feature, (<b>b</b>) IB3 feature, (<b>c</b>) IA3 feature, (<b>d</b>) IBAR feature, (<b>e</b>) PA feature, (<b>f</b>) PF feature, (<b>g</b>) MF feature.</p> "> Figure A3
<p>Box plots of <span class="html-italic">norm1</span> features obtained for the first measurement: (<b>a</b>) TI feature, (<b>b</b>) IB3 feature, (<b>c</b>) IA3 feature, (<b>d</b>) IBAR feature, (<b>e</b>) PA feature, (<b>f</b>) PF feature, (<b>g</b>) MF feature.</p> "> Figure A4
<p>Box plots of <span class="html-italic">norm1</span> features obtained for the second measurement: (<b>a</b>) TI feature, (<b>b</b>) IB3 feature, (<b>c</b>) IA3 feature, (<b>d</b>) IBAR feature, (<b>e</b>) PA feature, (<b>f</b>) PF feature, (<b>g</b>) MF feature.</p> "> Figure A5
<p>Box plots of <span class="html-italic">norm2</span> features obtained for the first measurement: (<b>a</b>) TI feature, (<b>b</b>) IB3 feature, (<b>c</b>) IA3 feature, (<b>d</b>) IBAR feature, (<b>e</b>) PA feature, (<b>f</b>) PF feature, (<b>g</b>) MF feature.</p> "> Figure A6
<p>Box plots of <span class="html-italic">norm2</span> features obtained for the second measurement: (<b>a</b>) TI feature, (<b>b</b>) IB3 feature, (<b>c</b>) IA3 feature, (<b>d</b>) IBAR feature, (<b>e</b>) PA feature, (<b>f</b>) PF feature, (<b>g</b>) MF feature.</p> "> Figure A7
<p>Confusion matrices for <span class="html-italic">raw</span> features used in the JVA decision tree classifier for the (<b>a</b>) first and (<b>b</b>) second signals.</p> "> Figure A8
<p>Confusion matrices for <span class="html-italic">norm1</span> features used in the JVA decision tree classifier for the (<b>a</b>) first and (<b>b</b>) second signals.</p> "> Figure A9
<p>Confusion matrices for <span class="html-italic">norm2</span> features used in the JVA decision tree classifier for the (<b>a</b>) first and (<b>b</b>) second signals.</p> "> Figure A10
<p>Confusion matrices for <span class="html-italic">raw</span> features used in the KNN classifier for the (<b>a</b>) first and (<b>b</b>) second signals.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Methods
2.3. Statistical Analysis
2.4. Vag Signal Features
- Total integral (TI): area under the spectrum curve.
- Integral below 300 Hz (IB3): area under the spectrum up to the 300 Hz mark.
- Integral above 300 Hz (IA3): area under the spectrum above the 300 Hz mark.
- Ratio of integral below and above 300 Hz (IBAR): area under the spectrum up to the 300 Hz mark divided by the area under the spectrum curve above the 300 Hz mark.
- Peak amplitude (PA): value of the highest amplitude of the spectrum.
- Peak frequency (PF): value of the frequency at which peak amplitude occurred.
- Median frequency (MF): value of the frequency at which areas under the curves above and below it are equal.
2.5. Classification
- Raw features, i.e., features obtained for the 0–2500 Hz range with a resolution of 0.05 Hz.
- Norm1 features, i.e., features obtained for the spectral curve up to 1 kHz and resampled to a resolution of 0.1 Hz [31].
- Norm2 features, i.e., features obtained for the spectral curve up to 500 Hz, resampled to a resolution of 1 Hz [47].
3. Results
4. Discussion
4.1. ICC
4.2. Differences in Features between Groups
4.3. Classification
4.4. Comparison to Previous Research
4.5. Further Research
4.6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DC/TMD | Diagnostic Criteria for Temporomandibular Disorders |
IA3 | Integral above 300 Hz |
IB3 | Integral below 300 Hz |
IBAR | Integral below 300 Hz to integral above 300 Hz ratio |
ICC | Intraclass correlation coefficient |
JVA | Joint vibration analysis |
MF | Median frequency |
MSBM | Mean square between measurements |
MSBS | Mean square between subjects |
MSE | Mean square error |
PA | Peak amplitude |
PF | Peak frequency |
RDC/TMD | Research Diagnostic Criteria for Temporomandibular Disorders |
TI | Total integral |
TMD | Temporomandibular disorders |
TMJ | Temporomandibular joints |
VAG | Vibroarthrography |
Appendix A. Equations Used to Calculate the ICC and It’s Confidence Intervals
Appendix B. Post Hoc Power Analysis
Study Group | Control Group | Combined | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Feature | ICC | Power (0.0) | Power (0.5) | ICC | Power (0.0) | Power (0.5) | ICC | Power (0.0) | Power (0.5) | |||
TI | 0.871 | 1.000 | 1.000 | 0.761 | 1.000 | 0.862 | 0.881 | 1.000 | 1.000 | |||
IB3 | 0.910 | 1.000 | 1.000 | 0.677 | 1.000 | 0.460 | 0.902 | 1.000 | 1.000 | |||
IA3 | 0.847 | 1.000 | 0.997 | 0.752 | 1.000 | 0.828 | 0.856 | 1.000 | 1.000 | |||
IBAR | 0.778 | 1.000 | 0.915 | 0.392 | 0.802 | 0.000 | 0.610 | 1.000 | 0.337 | |||
PA | 0.837 | 1.000 | 0.994 | 0.557 | 0.990 | 0.077 | 0.848 | 1.000 | 1.000 | |||
PF | 0.183 | 0.241 | 0.000 | 0.431 | 0.879 | 0.000 | 0.352 | 0.944 | 0.000 | |||
MF | 0.748 | 1.000 | 0.811 | 0.410 | 0.840 | 0.000 | 0.609 | 1.000 | 0.331 |
Appendix C. Expansion of ICC Analysis
Study Group | Control Group | Combined | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Feature | LCI | ICC | UCI | LCI | ICC | UCI | LCI | ICC | UCI | |||
TI | 0.676 | 0.902 | 0.928 | 0.676 | 0.755 | 0.949 | 0.817 | 0.902 | 0.949 | |||
IB3 | 0.579 | 0.907 | 0.932 | 0.579 | 0.676 | 0.947 | 0.813 | 0.900 | 0.947 | |||
IA3 | 0.665 | 0.885 | 0.915 | 0.665 | 0.746 | 0.937 | 0.779 | 0.881 | 0.937 | |||
IBAR | 0.299 | 0.785 | 0.839 | 0.299 | 0.438 | 0.782 | 0.362 | 0.614 | 0.782 | |||
PA | 0.465 | 0.853 | 0.891 | 0.465 | 0.581 | 0.926 | 0.743 | 0.860 | 0.926 | |||
PF | 0.163 | 0.434 | 0.555 | 0.163 | 0.314 | 0.624 | 0.059 | 0.377 | 0.624 | |||
MF | 0.001 | 0.843 | 0.884 | 0.001 | 0.161 | 0.769 | 0.334 | 0.594 | 0.769 |
Study Group | Control Group | Combined | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Feature | LCI | ICC | UCI | LCI | ICC | UCI | LCI | ICC | UCI | |||
TI | 0.877 | 0.909 | 0.934 | 0.822 | 0.719 | 0.788 | 0.822 | 0.905 | 0.950 | |||
IB3 | 0.860 | 0.896 | 0.924 | 0.800 | 0.658 | 0.740 | 0.800 | 0.893 | 0.944 | |||
IA3 | 0.860 | 0.896 | 0.924 | 0.777 | 0.704 | 0.777 | 0.777 | 0.880 | 0.937 | |||
IBAR | 0.636 | 0.722 | 0.790 | 0.373 | 0.507 | 0.616 | 0.373 | 0.621 | 0.786 | |||
PA | 0.691 | 0.766 | 0.825 | 0.629 | 0.537 | 0.641 | 0.629 | 0.791 | 0.887 | |||
PF | 0.004 | 0.164 | 0.316 | 0.000 | 0.378 | 0.507 | 0.000 | 0.286 | 0.558 | |||
MF | 0.705 | 0.777 | 0.833 | 0.506 | 0.579 | 0.676 | 0.506 | 0.712 | 0.842 |
Study Group | Control Group | Combined | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Feature | LCI | ICC | UCI | LCI | ICC | UCI | LCI | ICC | UCI | |||
TI | norm2 | norm2 | norm2 | norm2 | raw | norm1 | norm2 | norm2 | norm2 | |||
IB3 | raw | raw | raw | norm2 | raw | norm1 | raw | raw | raw | |||
IA3 | norm2 | norm2 | norm2 | norm2 | raw | norm1 | norm1 | norm1 | norm1 | |||
IBAR | raw | norm1 | norm1 | norm2 | norm2 | norm1 | norm2 | norm2 | norm2 | |||
PA | raw | norm1 | norm1 | norm2 | norm1 | norm1 | norm1 | norm1 | norm1 | |||
PF | norm1 | norm1 | norm1 | raw | raw | norm1 | norm1 | norm1 | norm1 | |||
MF | norm2 | norm1 | norm1 | norm2 | norm2 | norm1 | norm2 | norm2 | norm2 |
Appendix D. Boxplots for Separate Measurements
Appendix E. Confusion Matrices of the Classifiers
References
- Schiffman, E.; Ohrbach, R.; Truelove, E.; Look, J.; Anderson, G.; Goulet, J.P.; List, T.; Svensson, P.; Gonzalez, Y.; Lobbezoo, F.; et al. Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) for Clinical and Research Applications: Recommendations of the International RDC/TMD Consortium Network* and Orofacial Pain Special Interest Group†. J. Oral Facial Pain Headache 2014, 28, 6–27. [Google Scholar] [CrossRef] [PubMed]
- Svensson, M.; Lind, V.; Löfgren Harringe, M. Measurement of Knee Joint Range of Motion with a Digital Goniometer: A Reliability Study. Physiother. Res. Int. 2019, 24, e1765. [Google Scholar] [CrossRef] [PubMed]
- Prodoehl, J.; Thomas, P.; Krzak, J.J.; Hanke, T.; Tojanic, J.; Thomas, J. Effect of Starting Posture on Three-Dimensional Jaw and Head Movement. J. Oral Maxillofac. Res. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Bakalczuk, M.; Berger, M.; Ginszt, M.; Szkutnik, J.; Solomiia, S.; Majcher, P. Intra-Rater Reliability of TMJ Joint Vibration—A Pilot Study. Eur. J. Med. Technol. 2017, 14, 5. [Google Scholar]
- Sharma, S.; Crow, H.C.; Kartha, K.; McCall, W.D.; Gonzalez, Y.M. Reliability and Diagnostic Validity of a Joint Vibration Analysis Device. BMC Oral Health 2017, 17, 56. [Google Scholar] [CrossRef] [Green Version]
- Bączkowicz, D.; Kręcisz, K.; Borysiuk, Z. Analysis of Patellofemoral Arthrokinematic Motion Quality in Open and Closed Kinetic Chains Using Vibroarthrography. BMC Musculoskelet. Disord. 2019, 20, 48. [Google Scholar] [CrossRef]
- Mier, R. The Validity and Reliability of Joint Vibration Analysis for the Detection and Interpretation of Temporomandibular Joint Noise in the Classification of Intracapsular Disorders. Master’s Thesis, Tufts University, Medford, MA, USA, 2011. [Google Scholar]
- Sharma, S.; Crow, H.C.; McCall, W., Jr.; Gonzalez, Y.M. Systematic Review of Reliability and Diagnostic Validity of Joint Vibration Analysis for Diagnosis of Temporomandibular Disorders. J. Orofac. Pain 2013, 27, 51–60. [Google Scholar] [CrossRef]
- Kręcisz, K.; Bączkowicz, D.; Kawala-Sterniuk, A. Using Nonlinear Vibroartrographic Parameters for Age-Related Changes Assessment in Knee Arthrokinematics. Sensors 2022, 22, 5549. [Google Scholar] [CrossRef]
- Karpiński, R.; Krakowski, P.; Jonak, J.; Machrowska, A.; Maciejewski, M.; Nogalski, A. Diagnostics of Articular Cartilage Damage Based on Generated Acoustic Signals Using ANN—Part I: Femoral-Tibial Joint. Sensors 2022, 22, 2176. [Google Scholar] [CrossRef]
- Karpiński, R.; Krakowski, P.; Jonak, J.; Machrowska, A.; Maciejewski, M.; Nogalski, A. Diagnostics of Articular Cartilage Damage Based on Generated Acoustic Signals Using ANN—Part II: Patellofemoral Joint. Sensors 2022, 22, 3765. [Google Scholar] [CrossRef]
- Calixtre, L.B.; Moreira, R.F.C.; Franchini, G.H.; Alburquerque-Sendín, F.; Oliveira, A.B. Manual Therapy for the Management of Pain and Limited Range of Motion in Subjects with Signs and Symptoms of Temporomandibular Disorder: A Systematic Review of Randomised Controlled Trials. J. Oral Rehabil. 2015, 42, 847–861. [Google Scholar] [CrossRef] [PubMed]
- Conti, P.C.R.; Miranda, J.E.S.; Araujo, C.R.P. Relationship Between Systemic Joint Laxity, TMJ Hypertranslation, and Intra-articular Disorders. Cranio 2000, 18, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, T.; Egermark, I.; Carlsson, G.E. A Prospective Investigation over Two Decades on Signs and Symptoms of Temporomandibular Disorders and Associated Variables. A Final Summary. Acta Odontol. Scand. 2005, 63, 99–109. [Google Scholar] [CrossRef]
- Zakrzewska, J.M. Temporomandibular Disorders, Headaches and Chronic Pain. J. Pain Palliat. Care Pharmacother. 2015, 29, 61–63. [Google Scholar] [CrossRef]
- Manfredini, D.; Piccotti, F.; Ferronato, G.; Guarda-Nardini, L. Age Peaks of Different RDC/TMD Diagnoses in a Patient Population. J. Dent. 2010, 38, 392–399. [Google Scholar] [CrossRef]
- Manfredini, D.; Guarda-Nardini, L.; Winocur, E.; Piccotti, F.; Ahlberg, J.; Lobbezoo, F. Research Diagnostic Criteria for Temporomandibular Disorders: A Systematic Review of Axis I Epidemiologic Findings. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2011, 112, 453–462. [Google Scholar] [CrossRef]
- Liu, F.; Steinkeler, A. Epidemiology, Diagnosis, and Treatment of Temporomandibular Disorders. Dent. Clin. North Am. 2013, 57, 465–479. [Google Scholar] [CrossRef] [PubMed]
- Loster, J.E.; Osiewicz, M.A.; Groch, M.; Ryniewicz, W.; Wieczorek, A. The Prevalence of TMD in Polish Young Adults: TMD Prevalence. J. Prosthodont. 2017, 26, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.C.; Yap, A.U.; Türp, J.C. Prevalence of Temporomandibular Disorders in Patients Seeking Orthodontic Treatment: A Systematic Review. J. Oral Rehabil. 2020, 47, 270–280. [Google Scholar] [CrossRef]
- Manfredini, D.; Arveda, N.; Guarda-Nardini, L.; Segù, M.; Collesano, V. Distribution of Diagnoses in a Population of Patients with Temporomandibular Disorders. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, e35–e41. [Google Scholar] [CrossRef]
- Dworkin, S.F.; LeResche, L. Research Diagnostic Criteria for Temporomandibular Disorders: Review, Criteria, Examinations and Specifications, Critique. J. Craniomandib. Disord. Facial Oral Pain 1992, 6, 301–355. [Google Scholar]
- Schiffman, E.L.; Ohrbach, R.; Truelove, E.L.; Tai, F.; Anderson, G.C.; Pan, W.; Gonzalez, Y.M.; John, M.T.; Sommers, E.; List, T.; et al. The Research Diagnostic Criteria for Temporomandibular Disorders. V: Methods Used to Establish and Validate Revised Axis I Diagnostic Algorithms. J. Orofac. Pain 2010, 24, 63–78. [Google Scholar] [PubMed]
- Pawar, R.; Gulve, N.; Nehete, A.; Dhope, S.; Deore, D.; Chinglembi, N. Examination of the Temporomandibular Joint—A Review. J. Appl. Dent. Med. Sci. 2016, 2, 146–152. [Google Scholar]
- Youssef, H.M.M.; Elia, R.Z.; Ali, K.A.M. The Accuracy of High Resolution Ultrasound in the Diagnosis of TMJ Disc Displacement in Comparison With MRI. Qjm Int. J. Med. 2021, 114, hcab106.026. [Google Scholar] [CrossRef]
- Iwaszenko, S.; Munk, J.; Baron, S.; Smoliński, A. New Method for Analysis of the Temporomandibular Joint Using Cone Beam Computed Tomography. Sensors 2021, 21, 3070. [Google Scholar] [CrossRef] [PubMed]
- Kulesa-Mrowiecka, M.; Barański, R.; Kłaczyński, M. sEMG and Vibration System Monitoring for Differential Diagnosis in Temporomandibular Joint Disorders. Sensors 2022, 22, 3811. [Google Scholar] [CrossRef]
- Bączkowicz, D.; Majorczyk, E. Joint Motion Quality in Chondromalacia Progression Assessed by Vibroacoustic Signal Analysis. PM&R 2016, 8, 1065–1071. [Google Scholar] [CrossRef]
- Lo, G.H.; Strayhorn, M.T.; Driban, J.B.; Price, L.L.; Eaton, C.B.; Mcalindon, T.E. Subjective Crepitus as a Risk Factor for Incident Symptomatic Knee Osteoarthritis: Data From the Osteoarthritis Initiative. Arthritis Care Res. 2018, 70, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Stefanik, J.J.; Duncan, R.; Felson, D.T.; Peat, G. Diagnostic Performance of Clinical Examination Measures and Pain Presentation to Identify Patellofemoral Joint Osteoarthritis. Arthritis Care Res. 2018, 70, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Whittle, T.; Wang, L.; Murray, G.M. The Reproducibility of Temporomandibular Joint Vibrations over Time in the Human. J. Oral Rehabil. 2014, 41, 206–217. [Google Scholar] [CrossRef]
- Widmalm, S.E.; Dong, Y.; Li, B.X.; Lin, M.; Fan, L.J.; Deng, S.M. Unbalanced Lateral Mandibular Deviation Associated with TMJ Sound as a Sign in TMJ Disc Dysfunction Diagnosis. J. Oral Rehabil. 2016, 43, 911–920. [Google Scholar] [CrossRef]
- Bokkasam, V.; Siddavaram, S.J.; Shaik, S.; Suman, V.; Praveen, S.; Nikita, N.; Pothireddy, A.R.; Madduru, R. Joint Vibration Analysis A Functonal Tool in Diagnosis of Temporomandibular Disorders – Case Reports. Int. J. Contemp. Med. Surg. Radiol. 2019, 4. [Google Scholar] [CrossRef]
- Tanaka, N.; Hoshiyama, M. Vibroarthrography in Patients with Knee Arthropathy. J. Back Musculoskelet. Rehabil. 2012, 25, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Nalband, S.; Sundar, A.; Prince, A.A.; Agarwal, A. Feature Selection and Classification Methodology for the Detection of Knee-Joint Disorders. Comput. Methods Programs Biomed. 2016, 127, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Bączkowicz, D.; Kręcisz, K. Vibroarthrography in the Evaluation of Musculoskeletal System—A Pilot Study. Ortop. Traumatol. Rehabil. 2013, 15, 407–416. [Google Scholar] [CrossRef]
- Bączkowicz, D.; Falkowski, K.; Majorczyk, E. Assessment of Relationships Between Joint Motion Quality and Postural Control in Patients With Chronic Ankle Joint Instability. J. Orthop. Sport. Phys. Ther. 2017, 47, 570–577. [Google Scholar] [CrossRef]
- Durrani, S.; Bhandari, R.; Munireddy, S. Joint Vibration Analysis of Temporomandibular Joint in Asymptomatic Patients in the Age Group between 18–25 Years: An in-Vivo Study. Int. J. Oral Care Res. 2015, 3, 30–38. [Google Scholar]
- Kondrat, W.; Sierpinska, T.; Radke, J. Can Devices for the Instrumental Analysis of Temporomandibular Joints Be Used Interchangeably? Cranio 2021, 39, 165–171. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Liljequist, D.; Elfving, B.; Skavberg Roaldsen, K. Intraclass Correlation—A Discussion and Demonstration of Basic Features. PLoS ONE 2019, 14, e0219854. [Google Scholar] [CrossRef] [Green Version]
- McGraw, K.O.; Wong, S.P. Forming Inferences about Some Intraclass Correlation Coefficients. Psychol. Methods 1996, 1, 30–46. [Google Scholar] [CrossRef]
- Wolak, M.E.; Fairbairn, D.J.; Paulsen, Y.R. Guidelines for Estimating Repeatability. Methods Ecol. Evol. 2012, 3, 129–137. [Google Scholar] [CrossRef]
- Cunningham, P.; Delany, S.J. K-Nearest Neighbour Classifiers—A Tutorial. ACM Comput. Surv. 2022, 54, 1–25. [Google Scholar] [CrossRef]
- Singh, D.; Singh, B. Investigating the Impact of Data Normalization on Classification Performance. Appl. Soft Comput. 2020, 97, 105524. [Google Scholar] [CrossRef]
- Wong, T.T.; Yeh, P.Y. Reliable Accuracy Estimates from k -Fold Cross Validation. IEEE Trans. Knowl. Data Eng. 2020, 32, 1586–1594. [Google Scholar] [CrossRef]
- Gupta, B.; Thumati, P.; Radke, J. Temporomandibular Joint Vibrations from Totally Asymptomatic Subjects. J. Craniomandib. Sleep Pract. 2016, 34, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Zou, G.Y. Sample size formulas for estimating intraclass correlation coefficients with precision and assurance Statist. Med. 2012, 31, 3972–3981. [Google Scholar] [CrossRef]
- Łysiak, A.; Froń, A.; Bączkowicz, D.; Szmajda, M. Vibroarthrographic Signal Spectral Features in 5-Class Knee Joint Classification. Sensors 2020, 20, 5015. [Google Scholar] [CrossRef]
- Łysiak, A.; Szmajda, M. Empirical Comparison of the Feature Evaluation Methods Based on Statistical Measures. IEEE Access 2021, 9, 27868–27883. [Google Scholar] [CrossRef]
- Ishigaki, S.; Bessette, W.R.; Maruyama, T.; Widmalm, S.E. A Clinical Study of Temporomandibular Joint (TMJ) Vibrations in TMJ Dysfunction Patients. Cranio 1993, 11, 7–14. [Google Scholar] [CrossRef]
- Prior, J.; Mascaro, B.; Shark, L.K.; Stockdale, J.; Selfe, J.; Bury, R.; Cole, P.; Goodacre, J.A. Analysis of High Frequency Acoustic Emission Signals as a New Approach for Assessing Knee Osteoarthritis. Ann. Rheum. Dis. 2010, 69, 929–930. [Google Scholar] [CrossRef]
- Kiselev, J.; Ziegler, B.; Schwalbe, H.; Franke, R.; Wolf, U. Detection of Osteoarthritis Using Acoustic Emission Analysis. Med. Eng. Phys. 2019, 65, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Nevalainen, M.T.; Veikkola, O.; Thevenot, J.; Tiulpin, A.; Hirvasniemi, J.; Niinimäki, J.; Saarakkala, S.S. Acoustic Emissions and Kinematic Instability of the Osteoarthritic Knee Joint: Comparison with Radiographic Findings. Sci. Rep. 2021, 11, 19558. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, R. Knee Joint Osteoarthritis Diagnosis Based on Selected Acoustic Signal Discriminants Using Machine Learning. Appl. Comput. Sci. 2022, 18, 71–85. [Google Scholar] [CrossRef]
- Karpiński, R.; Krakowski, P.; Jonak, J.; Machrowska, A.; Maciejewski, M.; Nogalski, A. Estimation of Differences in Selected Indices of Vibroacoustic Signals between Healthy and Osteoarthritic Patellofemoral Joints as a Potential Non-Invasive Diagnostic Tool. J. Physics: Conf. Ser. 2021, 2130, 012009. [Google Scholar] [CrossRef]
- Gong, R.; Ohtsu, H.; Hase, K.; Ota, S. Vibroarthrographic Signals for the Low-Cost and Computationally Efficient Classification of Aging and Healthy Knees. Biomed. Signal Process. Control 2021, 70, 103003. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J. Multi-Fault Diagnosis for Rolling Element Bearings Based on Ensemble Empirical Mode Decomposition and Optimized Support Vector Machines. Mech. Syst. Signal Process. 2013, 41, 127–140. [Google Scholar] [CrossRef]
- Karpiński, R.; Krakowski, P.; Jonak, J.; Machrowska, A.; Maciejewski, M.; Nogalski, A. Analysis of Differences in Vibroacoustic Signals between Healthy and Osteoarthritic Knees Using EMD Algorithm and Statistical Analysis. J. Phys. Conf. Ser. 2021, 2130, 012010. [Google Scholar] [CrossRef]
Study Group | Control Group | Combined | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Feature | LCI | ICC | UCI | LCI | ICC | UCI | LCI | ICC | UCI | |||
TI | 0.826 | 0.871 | 0.905 | 0.685 | 0.761 | 0.821 | 0.779 | 0.881 | 0.937 | |||
IB3 | 0.878 | 0.910 | 0.934 | 0.581 | 0.677 | 0.755 | 0.817 | 0.902 | 0.949 | |||
IA3 | 0.795 | 0.847 | 0.887 | 0.672 | 0.752 | 0.814 | 0.736 | 0.856 | 0.924 | |||
IBAR | 0.707 | 0.778 | 0.834 | 0.248 | 0.392 | 0.519 | 0.356 | 0.610 | 0.780 | |||
PA | 0.782 | 0.837 | 0.879 | 0.436 | 0.557 | 0.657 | 0.723 | 0.848 | 0.919 | |||
PF | 0.024 | 0.183 | 0.332 | 0.291 | 0.431 | 0.553 | 0.030 | 0.352 | 0.606 | |||
MF | 0.669 | 0.748 | 0.811 | 0.268 | 0.410 | 0.534 | 0.356 | 0.609 | 0.779 |
Classifier | TPR | TNR | ACC |
---|---|---|---|
JVA—raw features, the first signal | 0.000 | 1.000 | 0.500 |
JVA—raw features, the second signal | 0.000 | 1.000 | 0.500 |
JVA—norm1 features, the first signal | 0.000 | 1.000 | 0.500 |
JVA—norm1 features, the second signal | 0.000 | 1.000 | 0.500 |
JVA—norm2 features, the first signal | 0.298 | 0.894 | 0.596 |
JVA—norm2 features, the second signal | 0.298 | 0.830 | 0.564 |
KNN—raw features, the first signal | 0.915 | 0.660 | 0.787 |
KNN—raw features, the second signal | 0.915 | 0.702 | 0.809 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łysiak, A.; Marciniak, T.; Bączkowicz, D. Repeatability of the Vibroarthrogram in the Temporomandibular Joints. Sensors 2022, 22, 9542. https://doi.org/10.3390/s22239542
Łysiak A, Marciniak T, Bączkowicz D. Repeatability of the Vibroarthrogram in the Temporomandibular Joints. Sensors. 2022; 22(23):9542. https://doi.org/10.3390/s22239542
Chicago/Turabian StyleŁysiak, Adam, Tomasz Marciniak, and Dawid Bączkowicz. 2022. "Repeatability of the Vibroarthrogram in the Temporomandibular Joints" Sensors 22, no. 23: 9542. https://doi.org/10.3390/s22239542