A Fast Adaptive Multi-Scale Kernel Correlation Filter Tracker for Rigid Object
<p>An illustration of the proposed MMKCF. We build two simple pyramid modules based on the KCF algorithm framework, namely scale pyramid and response pyramid. The two modules are embedded in the input and output of the filter, respectively. At the same time, the MCMRV-based adaptive template updater automatically monitors the response status of the filter, determines whether the target is blocked and dynamically adjusts its threshold.</p> "> Figure 2
<p>Construction of a multi-scale pyramid.</p> "> Figure 3
<p>Left: the change in the maximum response value of the correlation filter; right: 255th frame of ‘coke’ sequence in OTB datasets.</p> "> Figure 4
<p>Tracking effect comparison of KCF, SRDCF-decon, BACF, DSST, and our MMKCF on the Car-scale, as shown in (<b>a</b>–<b>e</b>), respectively. These frames are 10, 100, 150 and 220, respectively. The red dot <span style="color: #FF0000">•</span> represents the motion of the target center.</p> "> Figure 5
<p>Tracking effect comparison of KCF, SRDCF-decon, BACF, DSST, and our MMKCF on Coke, as shown in (<b>a</b>–<b>e</b>), respectively. These frames are 10, 50, 260, 270 and 280, respectively. The red dot <span style="color: #FF0000">•</span> represents the motion of the target center.</p> "> Figure 6
<p>Tracking effect comparison of KCF, SRDCF-decon, BACF, DSST, and our MMKCF on Box, as shown in (<b>a</b>–<b>e</b>), respectively. These frames are 10, 460, 500, 800 and 900, respectively. Red dot <span style="color: #FF0000">•</span> represents the motion of the target center.</p> "> Figure 7
<p>OPE comparison of our tracker and other 6 excellent trackers in terms of precision and success rate on the six selected video sequences.</p> "> Figure 8
<p>FPS comparison of our tracker and six other excellent trackers on the six selected video sequences, OTB2013 and OTB2015.</p> "> Figure 9
<p>OPE comparison of our tracker and 6 other excellent trackers in terms of precision and success rate on OTB-2013.</p> "> Figure 10
<p>OPE comparison of our tracker and 6 other excellent trackers in terms of precision and success rate on OTB-2015.</p> ">
Abstract
:1. Introduction
- A simple three-layer scale pyramid filter is embedded into KCF, which makes the tracker adapt to the scale change of the target efficiently.
- We propose an adaptive template updater based on MCMRV, which adaptively adjusts the template update threshold according to MCMRV criteria and plays a reliable role in dealing with target occlusion.
- Experimental results show that the improved algorithm can effectively solve the problems of scale variation and target occlusion in target tracking under the condition of high operation speed.
2. Related Works
3. The Proposed Approach
3.1. Kernel Correlation Filter Algorithm
3.2. Features Extraction and Regularization
3.3. Dimension Reduction
3.4. Adaptive Multi-Scale Pyramid
3.5. Adaptive Template Updater Based on the Mean of Cumulative Maximum Response Values
Algorithm 1: MMKCF |
|
4. Experiments
4.1. Datasets and Evaluate Metrics
4.2. Experimental Setup
4.3. Experiment Results
4.3.1. Experiments for Rigid Target on Selected Video Sequences
4.3.2. Experiments on OTB2013 and OTB2015 Datasets
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, T.; Abbas, A.M. Target tracking in wireless sensor networks. J. Comput. Sci. Technol. 2021, 21, e8. [Google Scholar]
- Song, D. Image processing technology in american football teaching. Int. J. Electr. Eng. Educ. 2021, 002072092110134. [Google Scholar] [CrossRef]
- Lu, H.; Guna, J.; Dansereau, D.G. Introduction to the special section on artificial intelligence and computer vision. Comput. Electr. Eng. 2017, 58, 444–446. [Google Scholar] [CrossRef]
- Yilmaz, A.; Javed, O.; Shah, M. Object tracking: A survey. ACM Comput. Surv. (CSUR) 2006, 38, 13. [Google Scholar] [CrossRef]
- Chai, X.; Wu, H.; Gan, Z.; Zhang, Y.; Nixon, K.W. An efficient visually meaningful image compression and encryption scheme based on compressive sensing and dynamic lsb embedding. Opt. Lasers Eng. 2020, 124, 105837. [Google Scholar] [CrossRef]
- Ding, W.; Wang, A.C.; Wu, C.; Guo, H.; Wang, Z.L. Human-machine interfacing enabled by triboelectric Nanogenerators and Tribotronics. Adv. Mater Technol. 2018, 4, 1800487. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Zhang, G.; Alam, B.Z.; Liu, A.; Jia, W.; Xie, M. A novel trust mechanism based on fog computing in sensor–cloud system. Future Gener. Comput. Syst. 2018, 109, 573–582. [Google Scholar]
- Li, X.; Zha, Y.F.; Zhang, T.Z.; Cui, Z.; Zuo, W.M.; Hou, Z.Q.; Wang, H.Z. Survey of visual object tracking algorithms based on deep learning. J. Image Graph. 2019, 24, 2057–2080. [Google Scholar]
- Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation filters. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 2544–2550. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Ling, H. Sanet: Structure-aware network for visual tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 42–49. [Google Scholar]
- Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 583–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.H.; Li, P.; Jin, C.C.; Zhang, W.A.; Liu, S. A novel adaptive kalman filtering approach to human motion tracking with magnetic-inertial sensors. IEEE Trans. Ind. Electron. 2019, 67, 8659–8669. [Google Scholar] [CrossRef]
- Bhat, P.G.; Subudhi, B.N.; Veerakumar, T.; Laxmi, V.; Gaur, M.S. Multi-feature fusion in particle filter framework for visual tracking. IEEE Sens. J. 2020, 20, 2405–2415. [Google Scholar] [CrossRef]
- Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603–619. [Google Scholar] [CrossRef]
- Hsia, C.H.; Liou, Y.J.; Chiang, J.S. Directional prediction camshift algorithm based on adaptive search pattern for moving object tracking. J. Real-Time Image Proc. 2016, 12, 183–195. [Google Scholar] [CrossRef]
- Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. Exploiting the circulant structure of tracking-by-detection with kernels. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2012; pp. 702–715. [Google Scholar]
- Danelljan, M.; Häger, G.; Khan, F.; Felsberg, M. Accurate scale estimation for robust visual tracking. In Proceedings of the British Machine Vision Conference, Nottingham, UK, 1–5 September 2014. [Google Scholar]
- Danelljan, M.; Häger, G.; Khan, F.S.; Felsberg, M. Discriminative scale space tracking. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1561–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danelljan, M.; Hager, G.; Shahbaz Khan, F.; Felsberg, M. Learning spatially regularized correlation filters for visual tracking. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4310–4318. [Google Scholar]
- Kiani Galoogahi, H.; Fagg, A.; Lucey, S. Learning background-aware correlation filters for visual tracking. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1135–1143. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Nam, H.; Han, B. Learning Multi-Domain Convolutional Neural Networks for Visual Tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Song, Y.; Ma, C.; Wu, X.; Gong, L.; Bao, L.; Zuo, W.; Shen, C.; Lau, R.W.H.; Yang, M.H. Visual tracking via adversarial learning. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1084–1093. [Google Scholar]
- Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P.H. Fully-convolutional siamese networks for object tracking. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 850–865. [Google Scholar]
- Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1627–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, D.; Balzano, L.; Fessler, J.A. Asymptotic performance of PCA for high-dimensional heteroscedastic data. J. Multivar. Anal. 2018, 167, 435–452. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Lim, J.; Yang, M.H. Online object tracking: A benchmark. In Proceedings of the Computer Vision Pattern Recognition, Portland, OR, USA, 23–28 June 2013. [Google Scholar]
- Wu, Y.; Lim, J.; Yang, M.H. Object tracking benchmark. IEEE Trans. Patt. Anal. Mach. Intell. 2015, 37, 1834–1848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danelljan, M.; Bhat, G.; Shahbaz Khan, F.; Felsberg, M. Eco: Efficient convolution operators for tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6638–6646. [Google Scholar]
- Xu, T.; Feng, Z.H.; Wu, X.J.; Kittler, J. Learning adaptive discriminative correlation filters via temporal consistency preserving spatial feature selection for robust visual object tracking. IEEE Trans. Image Process. 2019, 28, 5596–5609. [Google Scholar] [CrossRef]
Name | Features | Scale Adaptive |
---|---|---|
MMKCF | HOG | YES |
KCF | HOG | NO |
BACF | HOG | YES |
SRDCF_decon | HOG, CN | YES |
ECO_HC | HOG, CN | YES |
LADCF | HOG, CN | YES |
DSST | HOG, CN | YES |
Algo. | KCF | MMKCF | BACF | ECO-HC | LADCF | SRDCF | DSST | |
---|---|---|---|---|---|---|---|---|
Seq. | ||||||||
Car-scale | 0.806 | 0.905 | 0.904 | 0.837 | 0.837 | 0.901 | 0.757 | |
Coke | 0.838 | 0.986 | 0.917 | 0.921 | 0.965 | 0.859 | 0.917 | |
Vase | 0.793 | 0.875 | 0.775 | 0.686 | 0.701 | 0.819 | 0.852 | |
Lemming | 0.495 | 0.923 | 0.871 | 0.910 | 0.907 | 0.912 | 0.429 | |
Box | 0.415 | 0.946 | 0.414 | 0.396 | 0.941 | 0.925 | 0.394 | |
Liquor | 0.976 | 0.794 | 0.974 | 0.985 | 0.984 | 0.910 | 0.404 | |
MEAN | 0.721 | 0.904 | 0.809 | 0.789 | 0.889 | 0.887 | 0.626 |
Algo. | KCF | MMKCF | BACF | ECO-HC | LADCF | SRDCF | DSST | |
---|---|---|---|---|---|---|---|---|
Seq. | ||||||||
Car-scale | 217 | 128 | 15 | 27 | 16 | 4 | 45 | |
Coke | 122 | 80 | 16 | 29 | 11 | 2 | 15 | |
Vase | 155 | 88 | 14 | 28 | 16 | 2 | 18 | |
Lemming | 46 | 35 | 14 | 32 | 10 | 1 | 9 | |
Box | 32 | 28 | 13 | 30 | 11 | 2 | 7 | |
Liquor | 125 | 71 | 12 | 32 | 10 | 2 | 5 | |
MEAN | 116 | 72 | 14 | 30 | 12 | 2 | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, K.; Zhang, Z.; Qiu, C. A Fast Adaptive Multi-Scale Kernel Correlation Filter Tracker for Rigid Object. Sensors 2022, 22, 7812. https://doi.org/10.3390/s22207812
Zheng K, Zhang Z, Qiu C. A Fast Adaptive Multi-Scale Kernel Correlation Filter Tracker for Rigid Object. Sensors. 2022; 22(20):7812. https://doi.org/10.3390/s22207812
Chicago/Turabian StyleZheng, Kaiyuan, Zhiyong Zhang, and Changzhen Qiu. 2022. "A Fast Adaptive Multi-Scale Kernel Correlation Filter Tracker for Rigid Object" Sensors 22, no. 20: 7812. https://doi.org/10.3390/s22207812
APA StyleZheng, K., Zhang, Z., & Qiu, C. (2022). A Fast Adaptive Multi-Scale Kernel Correlation Filter Tracker for Rigid Object. Sensors, 22(20), 7812. https://doi.org/10.3390/s22207812