Miniaturized Parasitic Loaded High-Isolation MIMO Antenna for 5G Applications
<p>The design flow of the proposed work.</p> "> Figure 2
<p>Layout of the antenna configurations (Units mm) (<b>a</b>) Reference model (<b>b</b>) Intermediate model (<b>c</b>) Intermediate model with partial ground (<b>d</b>) With parasitic patch.</p> "> Figure 3
<p>Antenna characteristics of different iterations (<b>a</b>) <span class="html-italic">S</span><sub>11</sub> (<b>b</b>) E-plane (<b>c</b>) H-plane.</p> "> Figure 4
<p>Impedance matching and E and H-plane radiation at various level of trimming (<b>a</b>) <span class="html-italic">S</span><sub>11</sub> (<b>b</b>) E-plane radiation (<b>c</b>) H-plane radiation.</p> "> Figure 5
<p>Impedance matching and E and H-plane radiation for different length of parasitic (Lspiral). (<b>a</b>) <span class="html-italic">S</span><sub>11</sub>; (<b>b</b>) H-plane radiation; (<b>c</b>) E-plane radiation.</p> "> Figure 6
<p>MIMO configuration-I Layout.</p> "> Figure 7
<p>Radiation pattern of the MIMO configuration-I against separation (<span class="html-italic">d</span>) between antenna elements (<b>a</b>) <span class="html-italic">S</span><sub>11</sub> and <span class="html-italic">S</span><sub>12</sub>; (<b>b</b>) E-plane; (<b>c</b>) H-plane.</p> "> Figure 8
<p>Surface current distribution of different configurations at 28 GHz. (<b>a</b>) Without parasitic (<math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>0.19</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics></math>) (<b>b</b>) With parasitic (<math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>0.19</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics></math>) (<b>c</b>) With parasitic (<math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>0.54</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics></math>).</p> "> Figure 9
<p>Simulated performance characteristics of MIMO-1. (<b>a</b>) <span class="html-italic">ECC</span> (<b>b</b>) <span class="html-italic">DG</span>.</p> "> Figure 10
<p>The layout of the inverted antenna element MIMO-2 configuration.</p> "> Figure 11
<p>Comparative results of MIMO 1 and 2 configurations (<b>a</b>) S-parameters (<b>b</b>) Radiation pattern (<b>c</b>) MIMO performance parameters.</p> "> Figure 12
<p>Surface current distribution of MIMO-1 and 2 configurations (<b>a</b>) MIMO-1 (<b>b</b>) MIMO-2.</p> "> Figure 13
<p>Fabricated prototype of the proposed antenna.</p> "> Figure 14
<p>Simulated and measured scattering parameters of MIMO configuration-2.</p> "> Figure 15
<p>Measured results (<b>a</b>) Gain (<b>b</b>) Broadside E-plane radiation at 28 GHz (<b>c</b>) Broadside H-plane radiation at 28 GHz.</p> "> Figure 16
<p>Architecture of some work reported in literature [<a href="#B5-sensors-22-07283" class="html-bibr">5</a>], [<a href="#B8-sensors-22-07283" class="html-bibr">8</a>], and [<a href="#B16-sensors-22-07283" class="html-bibr">16</a>] respectively.</p> ">
Abstract
:1. Introduction
2. Antenna Design
2.1. Spiral-Inspired Parasitic Loaded Single Element Antenna
2.2. Design of MIMO Antenna
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The FCC’s. 5G FAST, Plan, Spectrum. 2021. Available online: https://www.fcc.gov/5G (accessed on 4 March 2022).
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.K.; Zhang, J.C. What will 5G be? IEEE J. Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Rafal Przesmycki, M.B.; Bugaj, M.; Nowosielski, L. Broad band microstrip antenna for 5G wireless systems operating at 28 GHz. Electronics 2020, 10, 1. [Google Scholar] [CrossRef]
- Kumar, J.; Shirgan, S.S.; Patil, D.B. Miniature Wideband 1 × 2 Microstrip Antenna for 4G Application. In Proceedings of the 2014 IEEE Global Conference on Wireless Computing & Networking (GCWCN), Lonavala, India, 22–24 December 2014; pp. 229–233. [Google Scholar]
- Dzagbletey, P.A.; Jung, Y.B. Stacked Microstrip Linear Array for Millimeter-Wave 5G Baseband Communication. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 780–783. [Google Scholar] [CrossRef]
- Kaeib, A.F.; Shebani, N.M.; Zarek, A.R. Design and analysis of a slotted microstrip antenna for 5G communication network at 28 GHz. In Proceedings of the 2019 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse, Tunisia, 24–26 March 2019; pp. 648–653. [Google Scholar]
- Valkonen, R. Compact 28-GHz Phased array antenna for 5G access. In Proceedings of the 2018 IEEE/MTT-S International Microwave Symposium—IMS, Philadelphia, PA, USA, 10–15 June 2018; pp. 1334–1337. [Google Scholar]
- Jose, M.C.; Radha, S.; Sreeja, B.S.; Kumar, P. Design of 28GHz high gain 5G MIMO antenna array system. In Proceedings of the TENCON 2019—2019 IEEE Region 10 Conference (TENCON), Kochi, India, 17–20 October 2019; pp. 1913–1916. [Google Scholar]
- Park, J.; Park, S.; Yang, W.; Kam, D.G. Folded aperture coupled patch antenna fabricated on FPC with vertically polarised end-fire radiation for fifth-generation millimeter-wave massive MIMO systems. IET Microw. Antennas Propag. 2018, 13, 1660–1663. [Google Scholar] [CrossRef]
- Park, J.S.; Ko, J.B.; Kwon, H.K.; Kang, B.S.; Park, B.; Kim, D. A tilted combined beam antenna for 5G communications using a 28-GHz band. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1685–1688. [Google Scholar] [CrossRef]
- Ikram, M.; Trong, B.N.; Abbosh, A. Multiband MIMO Microwave and millimeter Antenna System Employing Dual-function tapered slot structure. IEEE Trans. Antennas Propag. 2019, 67, 5705–5710. [Google Scholar] [CrossRef]
- Kumar, J. Compact MIMO antenna. Microw. Opt. Technol. Lett. 2016, 58, 1294–1298. [Google Scholar] [CrossRef]
- Kumar, K.M.; Kanaujia, B.K.; Kumar, S. Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends. Int. J. Antennas Propag. 2017, 2017, 2018527. [Google Scholar]
- Kumar, J.; Basu, B.; Talukdar, F.A.; Nandi, A. Multimode-inspired Low Cross-polarization Multiband Antenna Fabricated using Graphene-based Conductive Ink. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1861–1865. [Google Scholar] [CrossRef]
- Panth, M.; Malviya, L.; Choudary, V. Gain and Bandwidth Enhancement of 28 GHz Tapered Feed Antenna Arrays. In Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 1–3 July 2020. [Google Scholar]
- Khalily, M.; Tafazolli, R.; Xiao, P.; Kishk, A.A. Broadband mm-Wave Microstrip Array Antenna With Improved Radiation Characteristics for Different 5G Applications. IEEE Tran. Ant. Propag. Lett. 2018, 66, 4641–4647. [Google Scholar] [CrossRef]
- Ravi, K.C.; Kumar, J. Multi-directional Wideband Unit-element MIMO Antenna for FR-2 Band 5G Array Applications. Iran. J. Sci. Technol. Trans. Electr. Eng. 2022, 46, 311–317. [Google Scholar] [CrossRef]
- Devi, B.B.; Kumar, J. Small frequency range discrete bandwidth tunable multiband MIMO antenna for radio/LTE/ISM-2.4 GHz band applications. AEU—Int. J. Electron. Commun. 2022, 144, 154060. [Google Scholar]
d (mm) | 2 | 4 | 5 | 6 |
(dB) | −40.00 | −27.77 | −44.77 | −26.44 |
(GHz) | 2.46 | 3.1 | 2.89 | 2.16 |
(dB) | 4.8 | 5.5 | 5.2 | 4.7 |
(dB) | <−15 | <−15 | <−20 | <−20 |
Parameter | MIMO-1 | MIMO-2 |
---|---|---|
(dB) | −27.90 | −30.06 |
(GHz) | 2.16 | 3.00 |
(dB) | 4.8 | 4.1 |
(dB) | <−25 | <−20 |
(Abs) | 0.01 | 0.03 |
(dB) | 10 | 9.985 |
Ref./Metric | [5] | [6] | [8] | [9] | [10] | [16] | This Work |
---|---|---|---|---|---|---|---|
Size (mm) | 74.5 × 89.55 | 8.06 × 6.96 | 17.2 × 62 | 10 × 20 | 19.9 × 30 | 17.45 × 99.2 | 10.8 × 19.64 |
Substrate | NA | FR4 | RTD 5880 | Polyimide | Taconic TLY-5 | RTD 5880 | FR4 |
BW (%) | 6.3 | 8.5 | 12.6 | 9.4 | 5.4 | 24.4 | 8 |
Gain (dB) | 21.8 | 5.7 | 19.6 | 3.8 | 7.41 | 19.88 | 4.8 |
Isolation (dB) | 13.46 | NA | >30 | NA | NA | 20 | 25 |
ECC, DG (dB) | NA | NA | 0.01, 10 | NA | NA | NA | 0.01, 9.99 |
FoM | 6.65 | NA | 1.03 | NA | NA | 4.96 | 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravi, K.C.; Kumar, J. Miniaturized Parasitic Loaded High-Isolation MIMO Antenna for 5G Applications. Sensors 2022, 22, 7283. https://doi.org/10.3390/s22197283
Ravi KC, Kumar J. Miniaturized Parasitic Loaded High-Isolation MIMO Antenna for 5G Applications. Sensors. 2022; 22(19):7283. https://doi.org/10.3390/s22197283
Chicago/Turabian StyleRavi, Kiran Chand, and Jayendra Kumar. 2022. "Miniaturized Parasitic Loaded High-Isolation MIMO Antenna for 5G Applications" Sensors 22, no. 19: 7283. https://doi.org/10.3390/s22197283
APA StyleRavi, K. C., & Kumar, J. (2022). Miniaturized Parasitic Loaded High-Isolation MIMO Antenna for 5G Applications. Sensors, 22(19), 7283. https://doi.org/10.3390/s22197283