Wireless Measurements Using Electrical Impedance Spectroscopy to Monitor Fracture Healing
<p>Smart sensor design and accompanying components. (<b>A</b>) CAD rendering of component PCBs with dimensions. (<b>B</b>–<b>D</b>) Component PCBs and (<b>E</b>) assembled sensors encapsulated in resin housing. (<b>F</b>,<b>G</b>) Custom 3D printed packaging.</p> "> Figure 2
<p>Experimental sensor implantation. (<b>A</b>,<b>B</b>) Surgical planning and sensor integration with (<b>C</b>,<b>D</b>) the bone fixation plate and (<b>E</b>) within the rabbit fracture model. (<b>F</b>*) System overview. * Created with BioRender.com.</p> "> Figure 3
<p>Rabbit tibiae healing by ~8 weeks with EIS smart bone plate. (<b>A</b>) Representative X-rays of healing weeks 2–10 weeks post-operatively. (<b>B</b>) Radiographic healing scores from individual animals. (<b>C</b>) Average radiographic healing scores over time.</p> "> Figure 4
<p>Quantitative bone mineral density (BMD) and bone volume (BV) consistently increase during bone repair. (<b>A</b>) BMD and (<b>B</b>) BV/TV measurements of individual animals at necropsy with corresponding correlation coefficients (r) and <span class="html-italic">p</span>-values (<span class="html-italic">p</span>). (<b>C</b>–<b>E</b>) Representative µCT images at 6-, 8-, and 10-week necropsy. (<b>F</b>–<b>H</b>*) Representative HBQ stained histology images at 6-, 8-, and 10-week necropsy. * Scale bars are 500 (inset) and 2500 µm (bottom).</p> "> Figure 5
<p>Normal fracture healing produces sigmoidal electrical responses at 2 kHz. (<b>A</b>–<b>C</b>) Difference in electrical measurements between final and initial recordings across all frequencies for sensor U4879 (blue). (<b>D</b>–<b>F</b>) Longitudinal electrical output at 2 kHz for sensor U4879 (blue) and U4881 (orange). (<b>G</b>,<b>H</b>) Electrical measurements across 2–99 kHz frequency sweep (colors indicated in ledged) for sensor U4879. (<b>I</b>) Goodness of fit (R<sup>2</sup>) to a sigmoidal curve for sensors across 2–99 kHz frequency sweep (colors indicated in ledged in G).</p> "> Figure 6
<p>Smart sensors reproduce classic X-ray and µCT measures. All sensor measurements significantly correlate to (<b>A</b>–<b>C</b>) radiographic and (<b>D</b>–<b>F</b>) µCT outcomes. (<b>G</b>) Spearman correlation coefficients and goodness of fit to a linear regression (R<sup>2</sup>) between each measurement. Green coloring highlights statistical significance of P < 0.05.</p> "> Figure 7
<p>Sensors distinguish between union and not-healed fractures at all healing timepoints. (<b>A</b>–<b>C</b>) Sensor measurements grouped by healing timeframe (grey = not healed; green = union). (<b>D</b>) Only ns (no significance) shown on graph, all other comparisons are significant (α = 0.05). Internal references are greyed out on graph, green highlight indicates healed fractures. Data analyzed by one-way ANOVA followed by Tukey post-hoc testing. ** = P < 0.01, *** = P < 0.005, **** = P < 0.001.</p> "> Figure 8
<p>Pictorial representation of theoretical standard, delayed, and nonunion healing curves [<a href="#B9-sensors-22-06233" class="html-bibr">9</a>].</p> ">
Abstract
:1. Introduction
1.1. Fracture Healing Prevalence, Biology, and Economic Impact
1.2. Advances in Fracture Monitoring Technology
1.3. Electrical Impedance Spectroscopy (EIS) & Capacitive Sensors
2. Materials and Methods
2.1. Sensor Design
- Complex impedance measurement integrated circuit (AD5933; Analog Devices, Wilmington, MA, USA)
- Analog multiplexer (ADG858; Analog Devices, Wilmington, MA, USA))
- Via holes for attachment of electrodes
- Electrode wires, 0.127 mm diameter Pt-Ir wire with 0.0381 mm insulation (#778000, A-M Systems, Sequim, WA, USA)
- 15 mAh single cell Lithium Polymer battery (GM300815; PowerStream, Orem, Utah, USA)
- Radio module (CC1310; Texas Instruments, Dallas, TX, USA)
- Antenna, 915 MHz (66089-0906; Anaren, East Syracuse, NY, USA)
- Load switch (TPS27081A; Texas Instruments, Dallas, TX, USA)
- Voltage regulator (TPS78236; Texas Instruments, Dallas, TX, USA)
2.2. Experimental Fracture Fixation—Surgical Planning
2.3. Animal Model—Rabbit
2.4. Experimental Fracture Fixation
2.5. EIS Data Acquisition and Processing
2.6. Medical Imaging
2.7. Three Cortices Radiographic Scoring
2.8. Histology
2.9. Statistical Analysis
3. Results
3.1. Smart Fracture Fixation Implants Do Not Impede Standard Fracture Healing
3.2. Feasibility of Wireless Readings
3.3. Wireless Sensor Measurements Capture Fracture Healing Progression
3.4. Sensor Measurements Monitor Real-Time Fracture Healing & Distinguish between Union and Not-Healed Fractures
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United States Bone and Joint Initiative: The Burden of Musculoskeletal Diseases in the United States (BMUS). Available online: https://www.boneandjointburden.org/ (accessed on 4 December 2021).
- Hak, D.J.; Fitzpatrick, D.; Bishop, J.A.; Marsh, J.L.; Tilp, S.; Schnettler, R.; Simpson, H.; Alt, V. Delayed union and nonunions: Epidemiology, clinical issues, and financial aspects. Injury 2014, 45 (Suppl. S2), S3–S7. [Google Scholar] [CrossRef] [PubMed]
- Johnell, O.; Kanis, J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 2006, 17, 1726–1733. [Google Scholar] [CrossRef] [PubMed]
- Giannoudis, P.V.; Dinopoulos, H.; Tsiridis, E. Bone substitutes: An update. Injury 2005, 36 (Suppl. S3), S20–S27. [Google Scholar] [CrossRef] [PubMed]
- Kostenuik, P.; Mirza, F.M. Fracture healing physiology and the quest for therapies for delayed healing and nonunion. J. Orthop. Res. 2017, 35, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Fong, K.; Truong, V.; Foote, C.J.; Petrisor, B.; Williams, D.; Ristevski, B.; Sprague, S.; Bhandari, M. Predictors of nonunion and reoperation in patients with fractures of the tibia: An observational study. BMC Musculoskelet. Disord. 2013, 14, 103. [Google Scholar] [CrossRef]
- Calori, G.M.; Albisetti, W.; Agus, A.; Iori, S.; Tagliabue, L. Risk factors contributing to fracture non-unions. Injury 2007, 38 (Suppl. 2), S11–S18. [Google Scholar] [CrossRef]
- Dickson, K.F.; Katzman, S.; Paiement, G. The importance of the blood supply in the healing of tibial fractures. Contemp. Orthop. 1995, 30, 489–493. [Google Scholar]
- Hellwinkel, J.E.; Miclau, T., 3rd; Provencher, M.T.; Bahney, C.S.; Working, Z.M. The Life of a Fracture: Biologic Progression, Healing Gone Awry, and Evaluation of Union. JBJS Rev. 2020, 8, e1900221. [Google Scholar] [CrossRef]
- Ekegren, C.L.; Edwards, E.R.; de Steiger, R.; Gabbe, B.J. Incidence, Costs and Predictors of Non-Union, Delayed Union and Mal-Union Following Long Bone Fracture. Int. J. Environ. Res. Public Health 2018, 15, 2845. [Google Scholar] [CrossRef]
- Tay, W.H.; de Steiger, R.; Richardson, M.; Gruen, R.; Balogh, Z.J. Health outcomes of delayed union and nonunion of femoral and tibial shaft fractures. Injury 2014, 45, 1653–1658. [Google Scholar] [CrossRef]
- Investigators, S.; Bhandari, M.; Guyatt, G.; Tornetta, P., III; Schemitsch, E.; Swiontkowski, M.; Sanders, D.; Walter, S.D. Study to prospectively evaluate reamed intramedually nails in patients with tibial fractures (S.P.R.I.N.T.): Study rationale and design. BMC Musculoskelet. Disord. 2008, 9, 91. [Google Scholar]
- Le, A.X.; Miclau, T.; Hu, D.; Helms, J.A. Molecular aspects of healing in stabilized and non-stabilized fractures. J. Orthop. Res. 2001, 19, 78–84. [Google Scholar] [CrossRef]
- Berendsen, A.D.; Olsen, B.R. Bone development. Bone 2015, 80, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Bahney, C.S.; Hu, D.P.; Miclau, T., III; Marcucio, R.S. The multifaceted role of the vasculature in endochondral fracture repair. Front. Endocrinol. 2015, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Marsell, R.; Einhorn, T.A. The biology of fracture healing. Injury 2011, 42, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Kolar, P.; Schmidt-Bleek, K.; Schell, H.; Gaber, T.; Toben, D.; Schmidmaier, G.; Perka, C.; Buttgereit, F.; Duda, G.N. The early fracture hematoma and its potential role in fracture healing. Tissue Eng. Part B Rev. 2010, 16, 427–434. [Google Scholar] [CrossRef]
- Xing, Z.; Lu, C.; Hu, D.; Miclau, T., III; Marcucio, R.S. Rejuvenation of the inflammatory system stimulates fracture repair in aged mice. J. Orthop. Res. 2010, 28, 1000–1006. [Google Scholar] [CrossRef]
- Javaheri, B.; Caetano-Silva, S.P.; Kanakis, I.; Bou-Gharios, G.; Pitsillides, A.A. The Chondro-Osseous Continuum: Is It Possible to Unlock the Potential Assigned Within? Front. Bioeng. Biotechnol. 2018, 6, 28. [Google Scholar] [CrossRef]
- Drissi, H.; Sanjay, A. The Multifaceted Osteoclast; Far and Beyond Bone Resorption. J. Cell Biochem. 2016, 117, 1753–1756. [Google Scholar] [CrossRef]
- Cunningham, B.P.; Brazina, S.; Morshed, S.; Miclau, T., III. Fracture healing: A review of clinical, imaging and laboratory diagnostic options. Injury 2017, 48 (Suppl. 1), S69–S75. [Google Scholar] [CrossRef]
- Mitchell, S.L.; Obremskey, W.T.; Luly, J.; Bosse, M.J.; Frey, K.P.; Hsu, J.R.; MacKenzie, E.J.; Morshed, S.; O’Toole, R.V.; Scharfstein, D.O.; et al. Inter-Rater Reliability of the Modified Radiographic Union Score for Diaphyseal Tibial Fractures with Bone Defects. J. Orthop. Trauma 2019, 33, 301–307. [Google Scholar] [CrossRef] [PubMed]
- White, L.M.; Buckwalter, K.A. Technical considerations: CT and MR imaging in the postoperative orthopedic patient. Semin. Musculoskelet. Radiol. 2002, 6, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Garnavos, C. Treatment of aseptic non-union after intramedullary nailing without removal of the nail. Injury 2017, 48 (Suppl. S1), S76–S81. [Google Scholar] [CrossRef] [PubMed]
- Leighton, R.; Watson, J.T.; Giannoudis, P.; Papakostidis, C.; Harrison, A.; Steen, R.G. Healing of fracture nonunions treated with low-intensity pulsed ultrasound (LIPUS): A systematic review and meta-analysis. Injury 2017, 48, 1339–1347. [Google Scholar] [CrossRef]
- Cadossi, R.; Massari, L.; Racine-Avila, J.; Aaron, R.K. Pulsed Electromagnetic Field Stimulation of Bone Healing and Joint Preservation: Cellular Mechanisms of Skeletal Response. J. Am. Acad. Orthop. Surg. Glob. Res. Rev. 2020, 4, e1900155. [Google Scholar] [CrossRef]
- Thomas, J.D.; Kehoe, J.L. Bone Nonunion. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Schwarzenberg, P.; Darwiche, S.; Yoon, R.S.; Dailey, H.L. Imaging Modalities to Assess Fracture Healing. Curr. Osteoporos. Rep. 2020, 18, 169–179. [Google Scholar] [CrossRef]
- Chaudhary, D.S.; Solanki, J.J.; Verma, T.; Chavali, V.H. Monitoring the Progress of Treatment in Fracture Non-Union: The Role of Alkaline Phosphatase and Ultrasonography. Rev. Bras. Ortop. 2021, 56, 796–803. [Google Scholar]
- Sousa, C.P.; Dias, I.R.; Lopez-Pena, M.; Camassa, J.A.; Lourenco, P.J.; Judas, F.M.; Gomes, M.E.; Reis, R.L. Bone turnover markers for early detection of fracture healing disturbances: A review of the scientific literature. Acad. Bras. Cienc. 2015, 87, 1049–1061. [Google Scholar] [CrossRef]
- Sousa, C.P.; Lopez-Pena, M.; Guzon, F.M.; Abreu, H.V.; Luis, M.R.; Viegas, C.A.; Camassa, J.; Azevedo, J.T.; Cabrita, A.S.; Reis, R.L.; et al. Evaluation of bone turnover markers and serum minerals variations for predicting fracture healing versus non-union processes in adult sheep as a model for orthopedic research. Injury 2017, 48, 1768–1775. [Google Scholar] [CrossRef]
- Stewart, C.C.; O’Hara, N.N.; Bzovsky, S.; Bahney, C.S.; Sprague, S.; Slobogean, G.P.; Vita-Shock, I. Bone turnover markers as surrogates of fracture healing after intramedullary fixation of tibia and femur fractures. Bone Jt. Res. 2022, 11, 239–250. [Google Scholar] [CrossRef]
- Mattei, L.; Longo, A.; Di Puccio, F.; Ciulli, E.; Marchetti, S. Vibration Testing Procedures for Bone Stiffness Assessment in Fractures Treated with External Fixation. Ann. Biomed. Eng. 2017, 45, 1111–1121. [Google Scholar] [CrossRef] [PubMed]
- Chiu, W.K.; Vien, B.S.; Russ, M.; Fitzgerald, M. Towards a Non-Invasive Technique for Healing Assessment of Internally Fixated Femur. Sensors 2019, 19, 857. [Google Scholar] [CrossRef] [PubMed]
- Di Puccio, F.; Curreli, C.; Gagliani, M.; Mattei, L. In silico re-foundation of strain-based healing assessment of fractures treated with an external fixator. J. Mech. Behav. Biomed. Mater. 2021, 121, 104619. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Wang, T.; Pelletier, M.H.; Walsh, W.R. ‘SMART’ implantable devices for spinal implants: A systematic review on current and future trends. J. Spine Surg. 2022, 8, 117–131. [Google Scholar] [CrossRef]
- Sorriento, A.; Chiurazzi, M.; Fabbri, L.; Scaglione, M.; Dario, P.; Ciuti, G. A Novel Capacitive Measurement Device for Longitudinal Monitoring of Bone Fracture Healing. Sensors 2021, 21, 6694. [Google Scholar] [CrossRef] [PubMed]
- Gerard, H.; Markxa, C.L.D. The dielectric properties of biological cells at radiofrequencies: Applications in biotechnology. Enzym. Microb. Technol. 1999, 25, 161–171. [Google Scholar]
- Stoy, R.D.; Foster, K.R.; Schwan, H.P. Dielectric properties of mammalian tissues from 0.1 to 100 MHz: A summary of recent data. Phys. Med. Biol. 1982, 27, 501–513. [Google Scholar] [CrossRef]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269. [Google Scholar] [CrossRef]
- Grimnes, S.; Martinsen, Ø.G.; Martinsen, Ø.G. Bioimpedance and Bioelectricity Basics, 3rd ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2015; p. 563. [Google Scholar]
- Lin, M.C.; Yang, F.; Herfat, S.T.; Bahney, C.S.; Marmor, M.; Maharbiz, M.M. New opportunities for fracture healing detection: Impedance spectroscopy measurements correlate to tissue composition in fractures. J. Orthop. Res. 2017, 35, 2620–2629. [Google Scholar] [CrossRef]
- Bonifasi-Lista, C.; Cherkaev, E. Electrical impedance spectroscopy as a potential tool for recovering bone porosity. Phys. Med. Biol. 2009, 54, 3063–3082. [Google Scholar] [CrossRef]
- Lin, M.C.; Hu, D.; Marmor, M.; Herfat, S.T.; Bahney, C.S.; Maharbiz, M.M. Smart bone plates can monitor fracture healing. Sci. Rep. 2019, 9, 2122. [Google Scholar] [CrossRef] [PubMed]
- Dailey, H.L.; Wu, K.A.; Wu, P.S.; McQueen, M.M.; Court-Brown, C.M. Tibial Fracture Nonunion and Time to Healing After Reamed Intramedullary Nailing: Risk Factors Based on a Single-Center Review of 1003 Patients. J. Orthop. Trauma 2018, 32, e263–e269. [Google Scholar] [CrossRef] [PubMed]
- Zura, R.; Xiong, Z.; Einhorn, T.; Watson, J.T.; Ostrum, R.F.; Prayson, M.J.; Della Rocca, G.J.; Mehta, S.; McKinley, T.; Wang, Z.; et al. Epidemiology of Fracture Nonunion in 18 Human Bones. JAMA Surg. 2016, 151, e162775. [Google Scholar] [CrossRef] [PubMed]
- Litrenta, J.; Tornetta, P., 3rd; Mehta, S.; Jones, C.; O’Toole, R.V.; Bhandari, M.; Kottmeier, S.; Ostrum, R.; Egol, K.; Ricci, W.; et al. Determination of Radiographic Healing: An Assessment of Consistency Using RUST and Modified RUST in Metadiaphyseal Fractures. J. Orthop. Trauma 2015, 29, 516–520. [Google Scholar] [CrossRef]
- Liddell, R.S.; Davies, J.E. The Sigmoidal Nature of Bone Anchorage. Int. J. Oral Maxillofac. Implant. 2022, 37, e1–e11. [Google Scholar] [CrossRef]
- Mao, X.; Chen, C.; Wang, B.; Hou, J.; Xiang, C. A global bibliometric and visualized analysis in the status and trends of subchondral bone research. Medicine 2020, 99, e20406. [Google Scholar] [CrossRef]
- Barcik, J.; Epari, D.R. Can Optimizing the Mechanical Environment Deliver a Clinically Significant Reduction in Fracture Healing Time? Biomedicines 2021, 9, 691. [Google Scholar] [CrossRef]
- Ashhurst, D.E.; Hogg, J.; Perren, S.M. A method for making reproducible experimental fractures of the rabbit tibia. Injury 1982, 14, 236–242. [Google Scholar] [CrossRef]
- Parfitt, A.M. Misconceptions (2): Turnover is always higher in cancellous than in cortical bone. Bone 2002, 30, 807–809. [Google Scholar] [CrossRef]
- Oftadeh, R.; Perez-Viloria, M.; Villa-Camacho, J.C.; Vaziri, A.; Nazarian, A. Biomechanics and mechanobiology of trabecular bone: A review. J. Biomech. Eng. 2015, 137, 010802. [Google Scholar] [CrossRef] [PubMed]
- Dyson, E.D.; Whitehouse, W.J. Composition of trabecular bone in children and its relation to radiation dosimetry. Nature 1968, 217, 576–578. [Google Scholar] [CrossRef] [PubMed]
- Zura, R.; Mehta, S.; Della Rocca, G.J.; Steen, R.G. Biological Risk Factors for Nonunion of Bone Fracture. JBJS Rev. 2016, 4, e5. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, S.J.; Rabadiya, B. Bone Scan in Detection of Biological Activity in Nonhypertrophic Fracture Nonunion. Indian J. Nucl. Med. 2017, 32, 326–329. [Google Scholar] [CrossRef] [PubMed]
- Niikura, T.; Lee, S.Y.; Sakai, Y.; Nishida, K.; Kuroda, R.; Kurosaka, M. Comparison of radiographic appearance and bone scintigraphy in fracture nonunions. Orthopedics 2014, 37, e44–e50. [Google Scholar] [CrossRef]
- Genant, H.K.; Bautovich, G.J.; Singh, M.; Lathrop, K.A.; Harper, P.V. Bone-seeking radionuclides: An in vivo study of factors affecting skeletal uptake. Radiology 1974, 113, 373–382. [Google Scholar] [CrossRef]
- Galasko, C.S. The pathological basis for skeletal scintigraphy. J. Bone Jt. Surg. Br. 1975, 57, 353–359. [Google Scholar] [CrossRef]
- Kaneta, T.; Ogawa, M.; Daisaki, H.; Nawata, S.; Yoshida, K.; Inoue, T. SUV measurement of normal vertebrae using SPECT/CT with Tc-99m methylene diphosphonate. Am. J. Nucl. Med. Mol. Imaging 2016, 6, 262–268. [Google Scholar]
- Bhure, U.; Agten, C.; Lehnick, D.; Perez-Lago, M.D.S.; Beeres, F.; Link, B.C.; Strobel, K. Value of SPECT/CT in the assessment of necrotic bone fragments in patients with delayed bone healing or non-union after traumatic fractures. Br. J. Radiol. 2020, 93, 20200300. [Google Scholar] [CrossRef]
- Oe, K.; Zeng, F.; Fukui, T.; Nogami, M.; Murakami, T.; Matsumoto, T.; Kuroda, R.; Niikura, T. Quantitative bone single-photon emission computed tomography imaging for uninfected nonunion: Comparison of hypertrophic nonunion and non-hypertrophic nonunion. J. Orthop. Surg. Res. 2021, 16, 125. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukase, N.; Duke, V.R.; Lin, M.C.; Stake, I.K.; Huard, M.; Huard, J.; Marmor, M.T.; Maharbiz, M.M.; Ehrhart, N.P.; Bahney, C.S.; et al. Wireless Measurements Using Electrical Impedance Spectroscopy to Monitor Fracture Healing. Sensors 2022, 22, 6233. https://doi.org/10.3390/s22166233
Fukase N, Duke VR, Lin MC, Stake IK, Huard M, Huard J, Marmor MT, Maharbiz MM, Ehrhart NP, Bahney CS, et al. Wireless Measurements Using Electrical Impedance Spectroscopy to Monitor Fracture Healing. Sensors. 2022; 22(16):6233. https://doi.org/10.3390/s22166233
Chicago/Turabian StyleFukase, Naomasa, Victoria R. Duke, Monica C. Lin, Ingrid K. Stake, Matthieu Huard, Johnny Huard, Meir T. Marmor, Michel M. Maharbiz, Nicole P. Ehrhart, Chelsea S. Bahney, and et al. 2022. "Wireless Measurements Using Electrical Impedance Spectroscopy to Monitor Fracture Healing" Sensors 22, no. 16: 6233. https://doi.org/10.3390/s22166233