An IoT Measurement System Based on LoRaWAN for Additive Manufacturing
<p>LoRa end devices classification scheme.</p> "> Figure 2
<p>The 3D-Printer employed in the ADMIN 4D project.</p> "> Figure 3
<p>Sensor data transmission in the artifact production phase.</p> "> Figure 4
<p>Sensor data transmission in the artifact final deployment phase.</p> "> Figure 5
<p>LoRa gateway and network server. (<b>a</b>) Spare GW/NS components. (<b>b</b>) Packed GW/NS components.</p> "> Figure 6
<p>Two steps of the production phase with the embedding of Tinovi sensors. (<b>a</b>) Sensor embedding during production phase. (<b>b</b>) Final results.</p> "> Figure 7
<p>Tinovi sensor range tests 1: the industrial environment.</p> "> Figure 8
<p>Tinovi PM−IO−5−SM with Li−ion batteries: discharge curves obtained from both experimental measurements and theoretical model, with a transmission period of 5 min.</p> "> Figure 9
<p>Density function of the model calibration error.</p> "> Figure 10
<p>Tinovi PM-IO-5-SM battery lifetime estimation. Experimental discharge curve for a transmission period of 5 min and LTC battery.</p> ">
Abstract
:1. Introduction
2. Related Work and Contribution
3. LoRa and LoRaWAN
4. Additive Manufacturing Application
5. Experimental Setup and Results
- Microchip RN2483 LoRa Mote;
- Tinovi PM-IO-5-SM LoRaWAN IO Module;
5.1. Coverage Range Tests
5.2. Power Consumption and Battery Lifetime Estimation Tests
- is the voltage at the end of the exponential region, called the constant voltage ()
- Q is the maximum battery capacity ()
- K is the polarization constant (), often indicated as polarization resistance ()
- i is the battery current ()
- is a low-pass filtered version of the battery current, characteristic of this type of batteries, that often can be considered equal to i ()
- is the actual battery charge ()
- A is the exponential voltage ()
- B is the exponential capacity ()
- C is the nominal discharge curve slope ()
- T is the cell or internal temperature ()
- is the ambient temperature ()
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirimtat, A.; Krejcar, O.; Kertesz, A.; Tasgetiren, M.F. Future Trends and Current State of Smart City Concepts: A Survey. IEEE Access 2020, 8, 86448–86467. [Google Scholar] [CrossRef]
- Avancini, D.B.; Rodrigues, J.J.P.C.; Rabêlo, R.A.L.; Das, A.K.; Kozlov, S.; Solic, P. A new IoT-based smart energy meter for smart grids. Int. J. Energy Res. 2021, 45, 189–202. [Google Scholar] [CrossRef]
- Basir, R.; Qaisar, S.; Ali, M.; Aldwairi, M.; Ashraf, M.I.; Mahmood, A.; Gidlund, M. Fog Computing Enabling Industrial Internet of Things: State-of-the-Art and Research Challenges. Sensors 2019, 19, 4807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitturi, S.; Zunino, C.; Sauter, T. Industrial Communication Systems and Their Future Challenges: Next-Generation Ethernet, IIoT, and 5G. Proc. IEEE 2019, 107, 944–961. [Google Scholar] [CrossRef]
- Bruckner, D.; Stănică, M.; Blair, R.; Schriegel, S.; Kehrer, S.; Seewald, M.; Sauter, T. An Introduction to OPC UA TSN for Industrial Communication Systems. Proc. IEEE 2019, 107, 1121–1131. [Google Scholar] [CrossRef]
- Tramarin, F.; Mok, A.K.; Han, S. Real-Time and Reliable Industrial Control Over Wireless LANs: Algorithms, Protocols, and Future Directions. Proc. IEEE 2019, 107, 1027–1052. [Google Scholar] [CrossRef]
- Gaddam, S.C.; Rai, M.K. A Comparative Study on Various LPWAN and Cellular Communication Technologies for IoT Based Smart Applications. In Proceedings of the 2018 International Conference on Emerging Trends and Innovations In Engineering And Technological Research (ICETIETR), Cochin, India, 11–13 July 2018; pp. 1–8. [Google Scholar]
- Augustin, A.; Yi, J.; Clausen, T.; Townsley, W. A Study of LoRa: Long Range & Low Power Networks for the Internet of Things. Sensors 2016, 16, 1466. [Google Scholar]
- Chi, T.K.; Chen, H.C.; Chen, S.L.; Abu, P.A.R. A High-Accuracy and Power-Efficient Self-Optimizing Wireless Water Level Monitoring IoT Device for Smart City. Sensors 2021, 21, 1936. [Google Scholar] [CrossRef]
- Alves, H.B.M.; Lima, V.S.S.; Silva, D.R.C.; Nogueira, M.B.; Rodrigues, M.C.; Cunha, R.N.; Carvalho, D.F.; Sisinni, E.; Ferrari, P. Introducing a Survey Methodology for Assessing LoRaWAN Coverage in Smart Campus Scenarios. In Proceedings of the 2020 IEEE International Workshop on Metrology for Industry 4.0 & IOT (Metroind4.0&IOT), Roma, Italy, 3–5 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 708–712. [Google Scholar]
- Kulkarni, P.; Othman, Q.; Hakim, A.; Lakas, A. Experimental Evaluation of a Campus-Deployed IoT Network Using LoRa. IEEE Sensors J. 2020, 20, 2803–2811. [Google Scholar] [CrossRef]
- Faber, M.J.; van der Zwaag, K.M.; dos Santos, W.G.V.; do Rocha, H.R.; Segatto, M.E.V.; Silva, J.A.L. A Theoretical and Experimental Evaluation on the Performance of LoRa Technology. IEEE Sensors J. 2020, 20, 9480–9489. [Google Scholar] [CrossRef]
- Pham, C.; Ehsan, M. Dense Deployment of LoRa Networks: Expectations and Limits of Channel Activity Detection and Capture Effect for Radio Channel Access. Sensors 2021, 21, 825. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, M.; Ferrari, P.; Flammini, A.; Sisinni, E.; Gidlund, M. Using LoRa for industrial wireless networks. In Proceedings of the 2017 IEEE 13th International Workshop on Factory Communication Systems (WFCS), Trondheim, Norway, 31 May–2 June 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Beltramelli, L.; Mahmood, A.; Osterberg, P.; Gidlund, M.; Ferrari, P.; Sisinni, E. Energy Efficiency of Slotted LoRaWAN Communication with Out-of-Band Synchronization. IEEE Trans. Instrum. Meas. 2021, 70, 5501211. [Google Scholar] [CrossRef]
- Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M. Industrial Internet of Things: Challenges, Opportunities, and Directions. IEEE Trans. Ind. Inform. 2018, 14, 4724–4734. [Google Scholar] [CrossRef]
- Sather, J. Battery technologies for IoT. In Enabling the Internet of Things: From Integrated Circuits to Integrated Systems; Alioto, M., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 409–440. [Google Scholar] [CrossRef]
- Deng, D. Li-ion batteries: Basics, progress, and challenges. Energy Sci. Eng. 2015, 3, 385–418. [Google Scholar] [CrossRef]
- Singh, R.K.; Puluckul, P.P.; Berkvens, R.; Weyn, M. Energy Consumption Analysis of LPWAN Technologies and Lifetime Estimation for IoT Application. Sensors 2020, 20, 4794. [Google Scholar] [CrossRef]
- Bermudez, E.; Sadok, D.F. Energy Consumption of a LoRaWAN Network Using Jarvis Algorithm. In Proceedings of the 2020 15th International Conference for Internet Technology and Secured Transactions (ICITST), London, UK, 8–10 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Morin, E.; Maman, M.; Guizzetti, R.; Duda, A. Comparison of the Device Lifetime in Wireless Networks for the Internet of Things. IEEE Access 2017, 5, 7097–7114. [Google Scholar] [CrossRef]
- Wang, Y.; Vuran, M.C.; Goddard, S. Stochastic Analysis of Energy Consumption in Wireless Sensor Networks. In Proceedings of the 2010 7th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Boston, MA, USA, 21–25 June 2010; pp. 1–9. [Google Scholar] [CrossRef] [Green Version]
- Nurgaliyev, M.; Saymbetov, A.; Yashchyshyn, Y.; Kuttybay, N.; Tukymbekov, D. Prediction of energy consumption for LoRa based wireless sensors network. Wirel. Netw. 2020, 26, 3507–3520. [Google Scholar] [CrossRef]
- Bouguera, T.; Diouris, J.; Chaillout, J.; Andrieux, G. Energy consumption modeling for communicating sensors using LoRa technology. In Proceedings of the 2018 IEEE Conference on Antenna Measurements Applications (CAMA), Vasteras, Sweden, 3–6 September 2018; pp. 1–4. [Google Scholar]
- Leonardi, L.; Lo Bello, L.; Battaglia, F.; Patti, G. Comparative Assessment of the LoRaWAN Medium Access Control Protocols for IoT: Does Listen before Talk Perform Better than ALOHA? Electronics 2020, 9, 553. [Google Scholar] [CrossRef] [Green Version]
- Mora-Sánchez, O.B.; López-Neri, E.; Cedillo-Elias, E.J.; Aceves-Martínez, E.; Larios, V.M. Validation of IoT Infrastructure for the Construction of Smart Cities Solutions on Living Lab Platform. IEEE Trans. Eng. Manag. 2021, 68, 899–908. [Google Scholar] [CrossRef]
- Desamanera s.r.l. Rovigo, Italy. Available online: https://desamanera.com (accessed on 13 July 2022).
- Microchip—LoRa Mote User’s Guide. Available online: https://ww1.microchip.com/downloads/en/DeviceDoc/LoRaMoteUsersGuide.pdf (accessed on 13 July 2022).
- Tinovi—PM–IO–5–SM LoRaWAN IO Module. Available online: https://tinovi.com/wp-content/uploads/2019/03/PM-IO-5-SM.pdf (accessed on 13 July 2022).
- Taoglas TI.08.C.0112 Antenna. Available online: https://www.taoglas.com/product/ti-08-868mhz-terminal-antenna-smamra/ (accessed on 13 July 2022).
- Bobkov, I.; Rolich, A.; Denisova, M.; Voskov, L. Study of LoRa Performance at 433 MHz and 868 MHz Bands Inside a Multistory Building. In Proceedings of the 2020 Moscow Workshop on Electronic and Networking Technologies (MWENT), Moscow, Russia, 11–13 March 2020; pp. 1–6. [Google Scholar]
- Vitturi, S.; Trevisan, L.; Morato, A.; Frigo, G.; Tramarin, F. Evaluation of LoRaWAN for Sensor Data Collection in an IIoT–based Additive Manufacturing Project. In Proceedings of the 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, 25–28 May 2020; pp. 1–6. [Google Scholar] [CrossRef]
- AmazonBasics Batteries. Available online: https://www.amazon.it/AmazonBasics-Batterie-industriali-alcaline-confezione/dp/B07MLDJF3B (accessed on 13 July 2022).
- Duracell Batteries. Available online: https://it.rs-online.com/web/p/batterie-aaa/4488460 (accessed on 13 July 2022).
- Batteria AL LI–ION 3.7 V 2000 mAh Ricaricabile MKC 18650. Available online: https://www.melchioni-ready.com/batteria-al-li-ion-3-7v-2000mah-ricaricabile-18650-mkc-10185370.html (accessed on 13 July 2022).
- Saft Batteries. Available online: https://www.saftbatteries.com/ (accessed on 13 July 2022).
- Yoshio, M.; Brodd, R.J.; Kozawa, A. Lithium-Ion Batteries; Springer: Berlin/Heidelberg, Germany, 2009; Volume 1. [Google Scholar]
- Cheng, S.; Li, B.; Yuan, Z.; Zhang, F.; Liu, J. Development of a lifetime prediction model for lithium thionyl chloride batteries based on an accelerated degradation test. Microelectron. Reliab. 2016, 65, 274–279. [Google Scholar] [CrossRef]
- Trevisan, L.; Vitturi, S.; Tramarin, F.; Morato, A. An IIoT System to Monitor 3D–Printed Artifacts via LoRaWAN Embedded Sensors. In Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 8–11 September 2020; pp. 1–4. [Google Scholar]
- Tremblay, O.; Dessaint, L.A. Experimental Validation of a Battery Dynamic Model for EV Applications. World Electr. Veh. J. 2009, 3, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Li, X.; Song, L.; Xiang, L. Development of a theoretically based thermal model for lithium ion battery pack. J. Power Sources 2013, 223, 155–164. [Google Scholar] [CrossRef]
Phase | Sampling Period | Distance |
---|---|---|
Production | ≤5 min | ≤10 m |
Final Deployment | ≥60 min | ≤100 m |
Microchip RN2483 LoRa Mote | Tinovi PM-IO-5-SM LoRaWAN IO Module | |
---|---|---|
LoRa radio | RN2483 | SAMR34 |
MCU | PIC18LF45K50 8 bit - 32 KB Flash | 32-bit Arm Cortex-M0+ |
Programming Interface | USB Micro-B Connector/Ext. PC | USB Micro-B Connector + Android APP |
Antenna | External—SMA connector | Built-in |
Enclosure | NO | IP 67 |
Sensors | - MCP9700 – Linear Active Thermistor | - PM-WCS-3-I2C soil moisture sensor |
- Everlight (ALS-PT19-315C) Ambient Light Sensor |
Distance (m) | Microchip RN2483 LoRa Mote | Tinovi PM-IO-5-SM LoRaWAN IO Module |
---|---|---|
2 | Yes | Yes |
10 | Yes | Yes |
45 | Yes | No |
70 | Yes | No |
Working Mode | RN2483 LoRa Chip | SAMR34 LoRa Chip |
---|---|---|
Sleep | 1.3 | 0.79 |
Active | 2.8 mA | 1.4 mA |
TX/RX | 38.9/14.2 mA | 32.5/14.8 mA |
Shelf Life (years) | TX Period (min) | Lifetime (days) |
---|---|---|
5 | 5 | 27 |
60 | 32 | |
10 | 5 | 55 |
60 | 77 |
a. MKC 18,650 battery specification [37] | |
Description | Specification |
Rechargeable | Yes |
Nominal Voltage | 3.70 V |
Standard Capacity | 2000 mAh |
Measured Cut-off Voltage | 3.1 V |
Operating Temperature | −20 °C to 60 °C |
b. SAFT LS 17,500 battery specification [38] | |
Description | Specification |
Rechargeable | No |
Nominal Voltage | 3.60 V |
Standard Capacity | 3600 mAh |
Measured Cut-off Voltage | 3.3 V |
Operating Temperature | −60 °C to 85 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedullo, T.; Morato, A.; Peserico, G.; Trevisan, L.; Tramarin, F.; Vitturi, S.; Rovati, L. An IoT Measurement System Based on LoRaWAN for Additive Manufacturing. Sensors 2022, 22, 5466. https://doi.org/10.3390/s22155466
Fedullo T, Morato A, Peserico G, Trevisan L, Tramarin F, Vitturi S, Rovati L. An IoT Measurement System Based on LoRaWAN for Additive Manufacturing. Sensors. 2022; 22(15):5466. https://doi.org/10.3390/s22155466
Chicago/Turabian StyleFedullo, Tommaso, Alberto Morato, Giovanni Peserico, Luca Trevisan, Federico Tramarin, Stefano Vitturi, and Luigi Rovati. 2022. "An IoT Measurement System Based on LoRaWAN for Additive Manufacturing" Sensors 22, no. 15: 5466. https://doi.org/10.3390/s22155466