Beam Wander Restrained by Nonlinearity of Femtosecond Laser Filament in Air
<p>(<b>a</b>) Schematic diagram of the experimental device. Inset is a time-domain diagram of the filament-excited ultrasonic signal; (<b>b</b>) experimental apparatus for recording ultrasonic signal induced by filament under turbulent conditions; (<b>c</b>) experimental apparatus for recording the central drift of filaments under turbulent conditions.</p> "> Figure 2
<p>Spatial displacement of beam in turbulent air with various structural constants.</p> "> Figure 3
<p>Peak amplitude of the acoustic signal at different positions in the absence of artificial turbulence (the red line represents the 3 times standard deviations of ambient noise (3σ)).</p> "> Figure 4
<p>(<b>a</b>,<b>b</b>) Horizontal and vertical standard deviations of the beam center vary with the turbulence position under four turbulence strengths. Nonlinear transmission yellow rectangles represent the filamentation areas); (<b>c</b>,<b>d</b>) linear transmission. The pink baseline (dashed line) represents the horizontal and vertical standard deviations of the beam center under linear and nonlinear propagation conditions without artificial turbulence.</p> "> Figure 5
<p>The standard deviation of beam wander in linear and nonlinear transmission at the same turbulent position. (<b>a</b>,<b>b</b>) Vertical direction; (<b>c</b>,<b>d</b>) horizontal direction; red pentacle, maximal value of <math display="inline"><semantics> <mi>δ</mi> </semantics></math> in nonlinear transmission; black pentacle, maximal value of <math display="inline"><semantics> <mi>δ</mi> </semantics></math> in nonlinear transmission.</p> "> Figure 6
<p>(<b>a</b>) The onset distance of the filament varied with the turbulence position under the four turbulence strengths; (<b>b</b>) the end distance of the filament varies with the turbulence position under the four turbulence strengths; (<b>c</b>) filament length varies with the turbulence position under the four turbulence strengths; (<b>d</b>) mean filament length varies with the turbulence position under the four turbulence strengths. The pink baseline (dotted line) shows the beginning and ending positions of the filaments in the absence of artificial turbulence and the red baseline (dotted) line shows the mean length of the filament without artificial turbulence.</p> ">
Abstract
:1. Introduction
2. Experimental Setup and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Springer, M.M.; Strycker, B.D.; Wang, K.; Sokolov, A.V.; Scully, M.O. Femtosecond Laser Filaments for Use in Sub-Diffraction-Limited Imaging and Remote Sensing. Jove-J. Vis. Exp. 2019, 146, e58207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, A.N.; Phongikaroon, S. Elemental Detection of Cerium and Gadolinium in Aqueous Aerosol Using Laser-Induced Breakdown Spectroscopy. Appl. Spectrosc. 2016, 70, 1700–1708. [Google Scholar] [CrossRef] [PubMed]
- Itina, T.; Zakoldaev, R.; Sergeev, M.M.; Ma, H.; Kudryashov, S.; Medvedev, O.S.; Veiko, V.P. Ultra-short laser-induced high aspect ratio densification in porous glass. Opt. Mater. Express 2019, 9, 4379–4389. [Google Scholar] [CrossRef]
- Theberge, F.; Liu, W.; Luo, Q.; Chin, S.L. Ultrabroadband continuum generated in air (down to 230 nm) using ultrashort and intense laser pulses. Appl. Phys. B-Lasers Opt. 2005, 80, 221–225. [Google Scholar] [CrossRef]
- Becker, A.; Akozbek, N.; Vijayalakshmi, K.; Oral, E.; Bowden, C.M.; Chin, S.L. Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas. Appl. Phys. B-Lasers Opt. 2001, 73, 287–290. [Google Scholar] [CrossRef]
- Brown, J.M.; Wright, E.M.; Moloney, J.V.; Kolesik, M. On the relative roles of higher-order nonlinearity and ionization in ultrafast light-matter interactions. Opt. Lett. 2012, 37, 1604–1606. [Google Scholar] [CrossRef]
- Wang, T.L.; Kolesik, M. On the manifestation of higher-order nonlinearities in a noble gas medium undergoing strong ionization. Opt. Lett. 2017, 42, 4195–4198. [Google Scholar] [CrossRef]
- Fujii, T.; Goto, N.; Miki, M.; Nayuki, T.; Nemoto, K. Lidar measurement of constituents of microparticles in air by laser-induced breakdown spectroscopy using femtosecond terawatt laser pulses. Opt. Lett. 2006, 31, 3456–3458. [Google Scholar] [CrossRef]
- Quinn, M.N.; Jukna, V.; Ebisuzaki, T.; Dicaire, I.; Soulard, R.; Summerer, L.; Couairon, A.; Mourou, G. Space-based application of the CAN laser to LIDAR and orbital debris remediation. Eur. Phys. J. Spec. Top. 2015, 224, 2645–2655. [Google Scholar] [CrossRef]
- Daigle, J.F.; Kamali, Y.; Chateauneuf, M.; Tremblay, G.; Theberge, F.; Dubois, J.; Roy, G.; Chin, S.L. Remote sensing with intense filaments enhanced by adaptive optics. Appl. Phys. B-Lasers Opt. 2009, 97, 701–713. [Google Scholar] [CrossRef]
- Kamali, Y.; Daigle, J.F.; Theberge, F.; Chateauneuf, M.; Azarm, A.; Chen, Y.; Marceau, C.; Lessard, S.C.; Lessard, F.; Roy, G.; et al. Remote sensing of trace methane using mobile ferntosecond laser system of T&T Lab. Opt. Commun. 2009, 282, 2062–2065. [Google Scholar] [CrossRef]
- Kandidov, V.P.; Kosareva, O.G.; Tamarov, M.P.; Brodeur, A.; Chin, S.L. Nucleation and random movement of filaments in the propagation of high-power laser radiation in a turbulent atmosphere. Quantum Electron. 1999, 29, 911–915. [Google Scholar] [CrossRef]
- Penano, J.R.; Sprangle, P.; Hafizi, B.; Ting, A.; Gordon, D.F.; Kapetanakos, C.A. Propagation of ultra-short, intense laser pulses in air. Phys. Plasmas 2004, 11, 2865–2874. [Google Scholar] [CrossRef]
- Ackermann, R.; Mejean, G.; Kasparian, J.; Yu, J.; Salmon, E.; Wolf, J.P. Laser filaments generated and transmitted in highly turbulent air. Opt. Lett. 2006, 31, 86–88. [Google Scholar] [CrossRef]
- Salame, R.; Lascoux, N.; Salmon, E.; Ackermann, R.; Kasparian, J.; Wolf, J.P. Propagation of laser filaments through an extended turbulent region. Appl. Phys. Lett. 2007, 91, 171106. [Google Scholar] [CrossRef] [Green Version]
- Chin, S.L.; Talebpour, A.; Yang, J.; Petit, S.; Kandidov, V.P.; Kosareva, O.G.; Tamarov, M.P. Filamentation of femtosecond laser pulses in turbulent air. Appl. Phys. B-Lasers Opt. 2002, 74, 67–76. [Google Scholar] [CrossRef]
- Houard, A.; Franco, M.; Prade, B.; Durecu, A.; Lombard, L.; Bourdon, P.; Vasseur, O.; Fleury, B.; Robert, C.; Michau, V.; et al. Femtosecond filamentation in turbulent air. Phys. Rev. A 2008, 78, 033804. [Google Scholar] [CrossRef]
- Extermann, J.; Bejot, P.; Bonacina, L.; Billaud, P.; Kasparian, J.; Wolf, J.P. Effects of atmospheric turbulence on remote optimal control experiments. Appl. Phys. Lett. 2008, 92, 041103. [Google Scholar] [CrossRef] [Green Version]
- Sunilkumar, K.; Anand, N.; Satheesh, S.K.; Moorthy, K.K.; Ilavazhagan, G. Enhanced optical pulse broadening in free-space optical links due to the radiative effects of atmospheric aerosols. Opt. Express 2021, 29, 865–876. [Google Scholar] [CrossRef]
- Paunescu, G.; Spindler, G.; Riede, W.; Schroder, H.; Giesen, A. Multifilamentation of femtosecond laser pulses induced by small-scale air turbulence. Appl. Phys. B-Lasers Opt. 2009, 96, 175–183. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Shang, B.; Chu, C.; Sun, L.; Zhang, N.; Lin, L.; Liu, W. Enhancement of multi-filament generation and filament-induced fluorescence by turbulence. Opt. Commun. 2022, 517, 128290. [Google Scholar] [CrossRef]
- Eeltink, D.; Berti, N.; Marchiando, N.; Hermelin, S.; Gateau, J.; Brunetti, M.; Wolf, J.P.; Kasparian, J. Triggering filamentation using turbulence. Phys. Rev. A 2016, 94, 033806. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liang, X.; Goutsoulas, M.; Li, D.; Yang, X.; Yin, S.; Xu, J.; Christodoulides, D.N.; Efremidis, N.K.; Chen, Z. Robust propagation of pin-like optical beam through atmospheric turbulence. APL Photonics 2019, 4, 076103. [Google Scholar] [CrossRef] [Green Version]
- Helle, M.H.; DiComo, G.; Gregory, S.; Mamonau, A.; Kaganovich, D.; Fischer, R.; Palastro, J.; Melis, S.; Penano, J. Beating Optical-Turbulence Limits Using High-Peak-Power Lasers. Phys. Rev. Appl. 2019, 12, 054043. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zeng, T.; Lin, L.; Liu, W. Beam wandering of femtosecond laser filament in air. Opt. Express 2015, 23, 25628–25634. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Yu, J.; Luo, Q.; Chin, S.L. Multi-parameter characterization of the longitudinal plasma profile of a filament: A comparative study. Appl. Phys. B-Lasers Opt. 2004, 79, 519–523. [Google Scholar] [CrossRef]
- Bendersky, S.; Kopeika, N.S.; Blaunstein, N. Atmospheric optical turbulence over land in middle east coastal environments: Prediction modeling and measurements. Appl. Opt. 2004, 43, 4070–4079. [Google Scholar] [CrossRef]
- Zeng, T.; Yang, M.Y. A simple method to suppress turbulence-induced multiple filamentation. Laser Phys. 2019, 29, 045404. [Google Scholar] [CrossRef]
- Hu, Y.Z.; Nie, J.S.; Sun, K.; Wang, L. Filamentation of femtosecond laser pulse influenced by the air turbulence at various propagation distances. Opt. Commun. 2017, 383, 281–286. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Sun, L.; Liu, J.; Shang, B.; Tao, S.; Zhang, N.; Lin, L.; Zhang, Z. Beam Wander Restrained by Nonlinearity of Femtosecond Laser Filament in Air. Sensors 2022, 22, 4995. https://doi.org/10.3390/s22134995
Guo J, Sun L, Liu J, Shang B, Tao S, Zhang N, Lin L, Zhang Z. Beam Wander Restrained by Nonlinearity of Femtosecond Laser Filament in Air. Sensors. 2022; 22(13):4995. https://doi.org/10.3390/s22134995
Chicago/Turabian StyleGuo, Jiewei, Lu Sun, Jinpei Liu, Binpeng Shang, Shishi Tao, Nan Zhang, Lie Lin, and Zhi Zhang. 2022. "Beam Wander Restrained by Nonlinearity of Femtosecond Laser Filament in Air" Sensors 22, no. 13: 4995. https://doi.org/10.3390/s22134995
APA StyleGuo, J., Sun, L., Liu, J., Shang, B., Tao, S., Zhang, N., Lin, L., & Zhang, Z. (2022). Beam Wander Restrained by Nonlinearity of Femtosecond Laser Filament in Air. Sensors, 22(13), 4995. https://doi.org/10.3390/s22134995