A Synchronous Magnitude Estimation with P-Wave Phases’ Detection Used in Earthquake Early Warning System
<p>Application flowchart of the new magnitude estimation method (<span class="html-italic">P<sub>SNR</sub></span>).</p> "> Figure 2
<p>Locations and distributions of the main epicenters and stations. For the <span class="html-italic">M</span> ≤ 5.0 earthquakes, the hypocentral distance is within 50 km, and for the <span class="html-italic">M</span> > 5.0 earthquakes, the hypocentral distance is within 100 km.</p> "> Figure 3
<p>The photograph of the MNSMS. The text in the red label is MEMS Network Strong Motion Seismograph. The text on screen is the coordinate.</p> "> Figure 4
<p>(<b>a</b>) The record of the U−D direction in the M4.0 earthquake. (<b>b</b>) The local enlargement result of (<b>a</b>). (<b>c</b>) The STP/LTP result of the record. The length of the short-time window is 0.3 s. The length of the long-time window is 3 s. (<b>d</b>) The local enlargement result of (<b>c</b>). (<b>e</b>) The STP result of the record. (<b>f</b>) The local enlargement result of (<b>e</b>). (<b>g</b>) The LTP result of the record. (<b>h</b>) The local enlargement result of (<b>g</b>).</p> "> Figure 5
<p>The relationship between and hypocentral distance in the M4.0 earthquake.</p> "> Figure 6
<p>(<b>a</b>) The record of the U−D direction in the M7.0 earthquake. (<b>b</b>) The local enlargement result of (<b>a</b>). (<b>c</b>) The STP/LTP result of the record. The length of the short-time window is 0.3 s. The length of the long-time window is 3 s. (<b>d</b>) The local enlargement result of (<b>c</b>). (<b>e</b>) The STP result of the record. (<b>f</b>) The LTP result of the record.</p> "> Figure 7
<p>The relationship between <span class="html-italic">P<sub>SNR</sub></span> and hypocentral distance in the M7.0 earthquake.</p> "> Figure 8
<p>Attenuation relationship between <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>S</mi> <mi>N</mi> <mi>R</mi> </mrow> </msub> </mrow> </semantics></math> and hypocentral distance R. The green points in the figure are the <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>S</mi> <mi>N</mi> <mi>R</mi> </mrow> </msub> </mrow> </semantics></math> values of magnitude M3.0 to M4.0; the blue points are the <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>S</mi> <mi>N</mi> <mi>R</mi> </mrow> </msub> </mrow> </semantics></math> values of magnitude M4.5 to M6.0; the orange points are the <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>S</mi> <mi>N</mi> <mi>R</mi> </mrow> </msub> </mrow> </semantics></math> values of magnitude M7.0 to M8.0.</p> "> Figure 9
<p>(<b>a</b>,<b>b</b>) are residual graphs of <span class="html-italic">P<sub>d</sub></span> method and <span class="html-italic">P<sub>SNR</sub></span> method, respectively. The blue points are the residual points in the normal range, and the red points are the abnormal points.</p> "> Figure 10
<p>The variation of the <span class="html-italic">Me</span> with the number of the stations <span class="html-italic">N</span> in the Xingwen M5.7 event.</p> "> Figure 11
<p>Time-consuming distribution histogram of <span class="html-italic">P<sub>SNR</sub></span>.</p> "> Figure 12
<p>(<b>a</b>–<b>d</b>) are the results of the Timeliness comparison of <span class="html-italic">P<sub>SNR</sub></span> and <span class="html-italic">P<sub>d</sub></span> in the M4.0 earthquake. (<b>e</b>–<b>h</b>) are the results of the Timeliness comparison of <span class="html-italic">P<sub>SNR</sub></span> and <span class="html-italic">P<sub>d</sub></span> in the M8.0 earthquake. (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>) are local enlargement results of figures (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>), respectively. The green lines in all figures represent the arrival time of the P wave. The red lines in (<b>a</b>,<b>b</b>,<b>e</b>,<b>f</b>) represent the time of the <span class="html-italic">P<sub>SNR</sub></span> and <span class="html-italic">P<sub>d</sub></span>, respectively. The blue lines in (<b>c</b>,<b>d</b>,<b>g</b>,<b>h</b>) represent the time of the <span class="html-italic">P<sub>SNR</sub></span> and <span class="html-italic">P<sub>d</sub></span>, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Performance Analysis and Results
3.1. Small Earthquake Data Analysis
3.2. Large Earthquake Data Analysis
3.3. Comprehensive Analysis
4. Discussion
5. Conclusions
- (1)
- Both ghd PSNR method and Pd method have high stability and accuracy, and the PSNR method has strong robustness.
- (2)
- The highlight is that the PSNR method has good timeliness. The time corresponding to PSNR value is usually within 2 s from the first arrival of P waves, and sometimes it can even be synchronized to the first arrival of P waves, which can greatly save time in the earthquake early warning magnitude estimation. PSNR is a good choice that considers both timeliness and accuracy.
- (3)
- The STP/LTP method based on SNR and relative power contains certain energy information when seismic P waves arrive. There is a certain positive correlation between PSNR value and magnitude, and there is an obvious attenuation relationship between PSNR value and hypocentral distance R.
- (4)
- Owing to the dimensionless characteristics, the PSNR method can be widely used in different sensors and reduce costs in the processing of seismic records.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nakamura, Y. On the Urgent Earthquake Detection and Alarm System (UrEDAS). Proc. Ninth World Conf. Earthq. Eng. 1988, 2, 673–678. [Google Scholar]
- Shigeki, H.; Hiroaki, N.; Kana, A.; Aya, K.; Yukio, F. An Automatic Processing System for Broadcasting Earthquake Alarms. Bull. Seismol. Soc. Am. 2005, 95, 708–718. [Google Scholar]
- Allen, R.M.; Kanamori, H. The Potential for Earthquake Early Warning in Southern California. Science 2003, 300, 786–789. [Google Scholar] [CrossRef] [Green Version]
- Espinosa-Aranda, J.M.; Rodríquez, F.H. 76—The Seismic Alert System of Mexico City. Int. Geophys. 2003, 81, 1253–1259. [Google Scholar]
- Wu, Y.M.; Chung, J.K.; Shin, T.C.; Hsiao, N.C.; Tsai, Y.B.; Lee, H.K.; Teng, T.L. Development of an Integrated Earthquake Early Warning System in Taiwan-Case for the Hualien Area Earthquakes. Terr. Atmos. Ocean. Sci. 1999, 10, 719–736. [Google Scholar] [CrossRef] [Green Version]
- Erdik, M.; Fahjan, Y.; Ozel, O.; Alcik, H.; Mert, A.; Gul, M. Istanbul Earthquake Early Warning and Rapid Response System. Bull. Earthq. Eng. 2003, 1, 157–163. [Google Scholar] [CrossRef]
- Fu, J.; Li, Z.; Meng, H.; Wang, J.; Shan, X. Performance Evaluation of Low-Cost Seismic Sensors for Dense Earthquake Early Warning: 2018–2019 Field Testing in Southwest China. Sensors 2019, 19, 1999. [Google Scholar] [CrossRef] [Green Version]
- Kanamori, H. Real-Time seismology and earthquake damage mitigation. Annu. Rev. Earth Planet. Sci. 2005, 33, 195–214. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.M.; Kanamori, H.; Allen, R.M.; Hauksson, E. Determination of earthquake early warning parameters, τc and Pd, for southern California. Geophys. J. Int. 2007, 170, 711–717. [Google Scholar] [CrossRef] [Green Version]
- Yamada, T.; Ide, S. Limitation of the Predominant-Period Estimator for Earthquake Early Warning and the Initial Rupture of Earthquakes. Bull. Seismol. Soc. Am. 2008, 98, 2739–2745. [Google Scholar] [CrossRef]
- Wu, Y.M.; Shin, T.C.; Tsai, Y.B. Quick and Reliable Determination of Magnitude for Seismic Early Warning. Bull. Seismol. Soc. Am. 1998, 88, 1254–1259. [Google Scholar] [CrossRef]
- Wu, Y.M.; Kanamori, H. Experiment on an Onsite Early Warning Method for the Taiwan Early Warning System. Bull. Seismol. Soc. Am. 2005, 95, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.M.; Zhao, L. Magnitude estimation using the first three seconds P-wave amplitude in earthquake early warning. Geophys. Res. Lett. 2006, 33, 271–284. [Google Scholar] [CrossRef] [Green Version]
- Lancieri, M.; Zollo, A. A Bayesian approach to the real-time estimation of magnitude from the early P and S wave displacement peaks. J. Geophys. Res. Solid Earth 2008, 113, B12302. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Chen, Y.; Yu, K.; Han, J.; Fan, H.; Hu, R. Research on earthquake early warning parameters and rapid magnitude estimation based events in Yunnan region in 2014. World Inf. Earthq. Eng. 2018, 34, 123–131. [Google Scholar]
- Wang, Y.; Li, S.; Song, J. Magnitude-scaling relationships based on initial P-wave information in the Xinjiang region, China. J. Seismol. 2021, 25, 697–710. [Google Scholar] [CrossRef]
- Alcik, H.; Ozel, O.; Apaydin, N.; Erdik, M. A study on warning algorithms for Istanbul earthquake early warning system. Geophys. Res. Lett. 2009, 36, L00B05. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Li, S.; Song, J.; Wang, Y. Magnitude Estimation for Earthquake Early Warning Using a Deep Convolutional Neural Network. Front. Earth Sci. 2021, 9, 653226. [Google Scholar] [CrossRef]
- Mousavi, M.S.; Beroza, G.C. A Machine-Learning Approach for Earthquake Magnitude Estimation. Geophys. Res. Lett. 2019, 41, e2019GL085976. [Google Scholar] [CrossRef] [Green Version]
- Hu, A.D.; Zhang, H.M. Application of machine learning to magnitude estimation in earthquake emergency prediction system. Chin. J. Geophys. 2020, 63, 2617–2626. [Google Scholar]
- Fu, J.; Wang, X.; Li, Z.; Meng, H.; Wang, J.; Wang, W.; Tang, C. Automatic Phase-Picking Method for Detecting Earthquakes Based on the Signal-to-Noise-Ratio Concept. Seismol. Res. Lett. 2019, 91, 334–342. [Google Scholar] [CrossRef]
- Ellsworth, W.L.; Beroza, G.C. Seismic evidence for an earthquake nucleation phase. Science 1995, 268, 851–855. [Google Scholar] [CrossRef] [PubMed]
- Kodera, Y. Real-Time Detection of Rupture Development: Earthquake Early Warning Using P Waves From Growing Ruptures. Geophys. Res. Lett. 2018, 45, 156–165. [Google Scholar] [CrossRef] [Green Version]
- Zollo, A.; Lancieri, M.; Nielsen, S. Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records. Geophys. Res. Lett. 2006, 33, L23312. [Google Scholar] [CrossRef]
- Akaike, H. Markovian representation of stochastic processes and its application to analysis of autoregressive moving average processes. Ann. Inst. Stat. Math. 1974, 26, 363–387. [Google Scholar] [CrossRef]
- Zhu, W.; Beroza, G.C. PhaseNet: A deep-neural-network-based seismic arrival-time picking method. Geophys. J. Int. 2018, 216, 261–273. [Google Scholar] [CrossRef] [Green Version]
Pd | PSNR | |
---|---|---|
R2 | 0.7552 | 0.8012 |
Variance of error | 0.4074 | 0.3308 |
Event, Date | N | ||
---|---|---|---|
Gongxian, 13 March 2021 | 2 | 3.0 | 3.4 |
Gongxian, 7 November 2020 | 3 | 3.4 | 3.7 |
Gongxian, 23 June 2020 | 2 | 3.8 | 3.2 |
Gongxian, 12 June 2020 | 2 | 4.0 | 3.7 |
Gongxian, 15 February 2021 | 2 | 4.0 | 4.3 |
Gongxian, 13 November 2020 | 2 | 4.1 | 4.2 |
Xingwen, 16 December 2018 | 8 | 5.7 | 5.7 |
Luxian, 16 September 2021 | 2 | 6.0 | 5.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Fu, J.; Li, Z.; Wang, L.; Li, J.; Wang, J. A Synchronous Magnitude Estimation with P-Wave Phases’ Detection Used in Earthquake Early Warning System. Sensors 2022, 22, 4534. https://doi.org/10.3390/s22124534
Zhang D, Fu J, Li Z, Wang L, Li J, Wang J. A Synchronous Magnitude Estimation with P-Wave Phases’ Detection Used in Earthquake Early Warning System. Sensors. 2022; 22(12):4534. https://doi.org/10.3390/s22124534
Chicago/Turabian StyleZhang, Dingwen, Jihua Fu, Zhitao Li, Linyue Wang, Jiale Li, and Jianjun Wang. 2022. "A Synchronous Magnitude Estimation with P-Wave Phases’ Detection Used in Earthquake Early Warning System" Sensors 22, no. 12: 4534. https://doi.org/10.3390/s22124534