Digital Image Representation by Atomic Functions: The Compression and Protection of Data for Edge Computing in IoT Systems
<p>Discrete atomic compression of digital images.</p> "> Figure 2
<p>Extension of DAC file.</p> "> Figure 3
<p>Lossless DAC: compression of the full-color digital image.</p> "> Figure 4
<p>Lossless DAC: decompression of full-color digital image.</p> "> Figure 5
<p>Discrete atomic transform of an array.</p> "> Figure 6
<p>A structure of the matrix transform DAT1 of the depth 5.</p> "> Figure 7
<p>A structure of the matrix transform DAT2 of the depth 1.</p> "> Figure 8
<p>A structure of the matrix transform DAT2 of the depth n.</p> "> Figure 9
<p>Mix of DAT1 and DAT2.</p> "> Figure 10
<p>Compression of the test photo by ZIP and lossless DAC with DAT1 of the depth 5.</p> "> Figure 11
<p>A 24-bit full-color digital image, 544 × 393, 626 KB (BMP): original (<b>a</b>); reconstructed after lossy compression using DAC with DAT1 of the depth 5 (UBMAD = 95) (<b>b</b>).</p> "> Figure 12
<p>Representation of the image shown in <a href="#sensors-22-03751-f011" class="html-fig">Figure 11</a>a by different number of DAT-coefficients: 0.34 percent of all values (<b>a</b>); 1.32 percent of all values (<b>b</b>); 1.73 percent of all components (<b>c</b>); 11.2 percent of all components (<b>d</b>).</p> "> Figure 13
<p>Small copies of test images.</p> "> Figure 14
<p>Dependence of the minimum, maximum, and average values of <span class="html-italic">CR</span> on <span class="html-italic">UBMAD</span> for different structures of the procedure DAT: DAT1 of depth 5 (<b>a</b>); DAT2 of depth 1 (<b>b</b>); DAT2 of depth 2 (<b>c</b>); DAT2 of depth 3 (<b>d</b>); DAT2 of depth 4 (<b>e</b>); DAT2 of depth 5 (<b>f</b>).</p> "> Figure 15
<p>Total memory expenses required for storing the compressed and uncompressed data.</p> "> Figure 16
<p>Decompression of the image given in <a href="#sensors-22-03751-f011" class="html-fig">Figure 11</a>a: correct (<b>a</b>); incorrect (<b>b</b>,<b>c</b>).</p> "> Figure 17
<p>The principal steps of image processing by atomic functions.</p> "> Figure 18
<p>Application of atomic functions in image processing for EC in IoT systems.</p> ">
Abstract
:1. Introduction
1.1. Motivation
1.2. State of the Art and Objectives
2. Formulation of the Problem and an Approach
- First, to develop an extension of lossy DAC that allows reconstruction of the image compressed without any distortions;
- Second, to investigate features of the constructed lossless image compression algorithm and determine parameters that affect its effectiveness;
- Third, to find such parameters of lossless DAC that provide its best performance in terms of image compression.
3. DAC Based Solutions
3.1. Lossless DAC
3.2. Features of Lossless DAC
4. Efficiency of Lossless DAC
4.1. Efficiency Analysis Approach
- (1)
- Fix a structure of the procedure DAT; namely, DAT1 of the depth and DAT2 of the depth are considered;
- (2)
- Fix a value of the parameter that defines coefficients of quantization;
- (3)
- Compress each test image by lossless DAC with the settings fixed and compute the compression ratio (CR):
4.2. Results of Test Data Processing
5. Edge Computing-Based Application of DAC
5.1. Performance Analysis
- (1)
- The implementation of context adaptive binary arithmetic coding (CABAC) [26]; here, we note that several data models and their construction may vary depending on the structure of DAT applied;
- (2)
5.2. The Principal Steps of Image Processing by Atomic Functions
- (1)
- Resource-efficient EC and training at the edge, which is of particular importance, for example, in intelligent transportation systems [57];
- (2)
- (3)
- Data protection, in particular, satisfies the so-called zero-trust principle, which belongs to the set of top trends [40]; a high level of protection and confidentiality is ensured by the great variety of settings, in particular, the atomic function applied in DAT and a structure of this core procedure, as well as several ways to encode quantized DAT coefficients; despite this, its comparison to other methods, for example, biometric security through visual encryption [59] and lightweight cryptographic algorithm [60], must be carried out;
- (4)
5.3. Application of Atomic Functions in Image Processing for EC in IoT Systems
6. Conclusions
6.1. Discussion
6.2. Future Research
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 4th ed.; Pearson: London, UK, 2018. [Google Scholar]
- Scherer, R. Computer Vision Methods for Fast Image Classification and Retrieval; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Tan, C.; Leibo, J.Z.; Poggio, T.; Cipolla, R.; Battiato, S.; Farinella, G.M. Machine Learning for Computer Vision; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Van Vinh, P.; Dung, P.X.; Tien, P.T.; Hang, T.T.T.; Duc, T.H.; Nhat, T.D. Smart Home Security System Using Biometric Recognition. In IoT as a Service, IoTaaS 2020; Li, B., Li, C., Yang, M., Yan, Z., Zheng, J., Eds.; Springer: Cham, Switzerland, 2021; Volume 346, pp. 405–420. [Google Scholar] [CrossRef]
- Ghannam, R.B.; Techtmann, S.M. Machine learning applications in microbial ecology, human microbiome studies, and environmental monitoring. Comput. Struct. Biotechnol. J. 2021, 19, 1092–1107. [Google Scholar] [CrossRef] [PubMed]
- Fujiyoshi, H.; Hirakawa, T.; Yamashita, T. Deep learning-based image recognition for autonomous driving. IATSS Res. 2019, 43, 244–252. [Google Scholar] [CrossRef]
- Wiriyathammabhum, P.; Summers-Stay, D.; Fermüller, C.; Aloimonos, Y. Computer Vision and Natural Language Processing: Recent Approaches in Multimedia and Robotics. ACM Comput. Surv. 2017, 49, 1–44. [Google Scholar] [CrossRef]
- Rayes, A.; Salam, S. Internet of Things from Hype to Reality: The Road to Digitization, 3rd ed.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Pillai, D.K. New Computational Models for Image Remote Sensing and Big Data. In Big Data Analytics for Satellite Image Processing and Remote Sensing; Swarnalatha, P., Sevugan, P., Eds.; IGI Global: Hershey, PA, USA, 2018; pp. 232–248. [Google Scholar] [CrossRef]
- People will Take 1.2 Trillion Digital Photos This Year—Thanks to Smartphones. Available online: https://www.businessinsider.com/12-trillion-photos-to-be-taken-in-2017-thanks-to-smartphones-chart-2017-8 (accessed on 10 April 2022).
- The SICAS Medical Image Repository. Available online: https://www.smir.ch (accessed on 10 April 2022).
- Sentinel-2. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 10 April 2022).
- Large-scale CelebFaces Attributes (CelebA) Dataset. Available online: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html (accessed on 10 April 2022).
- Jwa, A.S.; Poldrack, R.A. The spectrum of data sharing policies in neuroimaging data repositories. Hum. Brain Mapp. 2022, 43, 2707–2721. [Google Scholar] [CrossRef] [PubMed]
- Rady, M.; Abdelkader, T.; Ismail, R. Integrity and Confidentiality in Cloud Outsourced Data. Ain Shams Eng. J. 2019, 10, 275–285. [Google Scholar] [CrossRef]
- Alhirabi, N.; Rana, O.; Perera, C. Security and Privacy Requirements for the Internet of Things: A Survey. ACM Trans. Internet Things 2021, 2, 1–37. [Google Scholar] [CrossRef]
- Sajedi, H. Applications of data hiding techniques in medical and healthcare systems: A survey. Netw. Modeling Anal. Health Inform. Bioinform. 2018, 7, 6. [Google Scholar] [CrossRef]
- Mansouri, Y.; Ali Babar, M. A review of edge computing: Features and resource virtualization. J. Parallel Distrib. Comput. 2021, 150, 155–183. [Google Scholar] [CrossRef]
- Avasalcai, C.; Murturi, I.; Dustdar, D. Edge and Fog: A Survey, Use Cases, and Future Challenges. In Fog Computing: Theory and Practice; Abbas, A., Khan, S.U., Zomaya, A.Y., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 43–66. [Google Scholar]
- Chang, Z.; Liu, S.; Xiong, X.; Cai, Z.; Tu, G. A Survey of Recent Advances in Edge-Computing-Powered Artificial Intelligence of Things. IEEE Internet Things J. 2021, 8, 13849–13875. [Google Scholar] [CrossRef]
- AI Cybersecurity Challenges. Threat Landscape for Artificial Intelligence; The European Union Agency for Cybersecurity. 2020. Available online: https://www.enisa.europa.eu/publications/artificial-intelligence-cybersecurity-challenges (accessed on 10 April 2022).
- Cybersecurity Challenges in the Uptake of Artificial Intelligence in Autonomous Driving; The European Union Agency for Cybersecurity. 2021. Available online: https://www.enisa.europa.eu/publications/enisa-jrc-cybersecurity-challenges-in-the-uptake-of-artificial-intelligence-in-autonomous-driving (accessed on 10 April 2022).
- Pevnev, V.; Torinyk, V.; Kharchenko, V.S. Cyber security of wireless smart systems channels of intrusions and radio frequency vulnerabilities. Radioelectron. Comput. Syst. 2020, 96, 74–91. [Google Scholar] [CrossRef]
- Kolisnyk, M. Vulnerability analysis and method of selection of communication protocols for information transfer in Internet of Things systems. Radioelectron. Comput. Syst. 2021, 1, 133–149. [Google Scholar] [CrossRef]
- Shi, Y.-Q.; Sun, H. Image and Video Compression for Multimedia Engineering, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Sayood, K. Introduction to Data Compression, 5th ed.; Morgan Kaufman: Cambridge, MA, USA, 2017. [Google Scholar]
- The Quite OK Image Format for Fast, Lossless Compression. Available online: https://qoiformat.org/ (accessed on 10 April 2022).
- Number of Smartphones Sold to End Users Worldwide from 2007 to 2021. Available online: https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007 (accessed on 10 April 2022).
- Chowdhary, C.L.; Alazab, M.; Chaudhary, A.; Hakak, S.; Gadekallu, T.R. Computer Vision and Recognition Systems Using Machine and Deep Learning Approaches; IET: London, UK, 2021; Volume 42. [Google Scholar]
- Amount of Data Created, Consumed and Stored 2010–2025. Available online: https://www.statista.com/statistics/871513/worldwide-data-created/ (accessed on 10 April 2022).
- Global Losses from Cybercrime Skyrocketed to Nearly $1 Trillion in 2020, New Report Finds. Available online: https://www.washingtonpost.com/politics/2020/12/07/cybersecurity-202-global-losses-cybercrime-skyrocketed-nearly-1-trillion-2020/ (accessed on 10 April 2022).
- Kizza, J.M. Guide to Computer Network Security; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- General Data Protection Regulation GDPR. Available online: https://gdpr-info.eu/ (accessed on 10 April 2022).
- Aumasson, J.-P. Crypto Dictionary: 500 Tasty Tidbits for the Curious Cryptographer; No Starch Press: San Francisco, CA, USA, 2021. [Google Scholar]
- Ali, W.; Tian, W.; Din, S.; Khan, A.A. Classical and modern face recognition approaches: A complete review. Multimed. Tools Appl. 2021, 80, 4825–4880. [Google Scholar] [CrossRef]
- Fuad, T.H.; Fime, A.A.; Sikder, D.; Iftee, A.R.; Rabbi, J.; Al-Rakhami, M.S.; Gumaei, A.; Sen, O.; Fuad, M.; Islam, N. Recent Advances in Deep Learning Techniques for Face Recognition. IEEE Access 2021, 9, 99112–99142. [Google Scholar] [CrossRef]
- Kharchenko, V.; Illiashenko, O. Concepts of Green IT Engineering: Taxonomy, Principles and Implementation. In Green IT Engineering: Concepts, Models, Complex Systems Architectures; Kharchenko, V., Kondratenko, Y., Kacprzyk, J., Eds.; Springer: Cham, Switzerland, 2016; Volume 74, pp. 3–19. [Google Scholar] [CrossRef]
- Data Storage Trends to Watch Out for in 2022. Available online: https://www.intelligentcio.com/eu/2022/01/18/data-storage-trends-to-watch-out-for-in-2022 (accessed on 10 April 2022).
- Storage and Infrastructure Trends for 2022. Available online: https://www.datacenterdynamics.com/en/opinions/storage-and-infrastructure-trends-for-2022 (accessed on 10 April 2022).
- Three Trends to Guide Your Data Protection Strategy in 2022. Available online: https://tdwi.org/articles/2021/12/01/dwt-all-three-trends-to-guide-your-data-protection-strategy-in-2022.aspx (accessed on 10 April 2022).
- Data Privacy Trends to Watch in 2022–2025. Available online: https://infopulse-scm.com/articles/main-data-privacy-trends-to-watch-in-2022-2025 (accessed on 10 April 2022).
- Dong, Y.; Bai, J.; Chen, X. A Review of Edge Computing Nodes based on the Internet of Things. In Proceedings of the 5th International Conference on Internet of Things, Big Data and Security (IoTBDS 2020), SCITEPRESS—Science and Technology Publications, online, 7–9 May 2020; pp. 313–320. [Google Scholar] [CrossRef]
- Top 3 Trends in Computer Vision for 2022. Available online: https://blog.superannotate.com/computer-vision-trends (accessed on 10 April 2022).
- Filho, C.P.; Marques, E., Jr.; Chang, V.; dos Santos, L.; Bernardini, F.; Pires, P.F.; Ochi, L.; Delicato, F.C. A Systematic Literature Review on Distributed Machine Learning in Edge Computing. Sensors 2022, 22, 2665. [Google Scholar] [CrossRef]
- Ometov, A.; Molua, O.L.; Komarov, M.; Nurmi, J. A Survey of Security in Cloud, Edge, and Fog Computing. Sensors 2022, 22, 927. [Google Scholar] [CrossRef]
- Rvachev, V.A. Compactly supported solutions of functional-differential equations and their applications. Russ. Math. Surv. 1990, 45, 87–120. [Google Scholar] [CrossRef]
- Makarichev, V.; Lukin, V.; Brysina, I. On the Applications of the Special Class of Atomic Functions: Practical Aspects and Perspectives. In Integrated Computer Technologies in Mechanical Engineering; Nechyporuk, M., Pavlikov, V., Kritskiy, D., Eds.; Springer: Cham, Switzerland, 2021; Volume 188, pp. 42–54. [Google Scholar] [CrossRef]
- Makarichev, V.; Kharchenko, V. Application of dynamic programming approach to computation of atomic functions. Radioelectron. Comput. Syst. 2021, 100, 36–45. [Google Scholar] [CrossRef]
- Makarichev, V.; Vasilyeva, I.; Lukin, V.; Vozel, B.; Shelestov, A.; Kussul, N. Discrete Atomic Transform-Based Lossy Compression of Three-Channel Remote Sensing Images with Quality Control. Remote Sens. 2022, 14, 125. [Google Scholar] [CrossRef]
- Chui, C.K.; Jiang, Q. Applied Mathematics: Data Compression, Spectral Methods, Fourier Analysis, Wavelets, and Applications; Atlantis Press: Paris, France, 2013. [Google Scholar]
- ADCT: A New High Quality DCT Based Coder for Lossy Image Compression. Available online: https://ponomarenko.info/adct.htm (accessed on 10 April 2022).
- AGU—DCT Based High Quality Image Compression. Available online: http://www.ponomarenko.info/agu.htm (accessed on 10 April 2022).
- Makarichev, V.O.; Lukin, V.V.; Brysina, I.V. On Estimates of Coefficients of Generalized Atomic Wavelets Expansions and their Application to Data Processing. Radioelectron. Comput. Syst. 2020, 93, 44–57. [Google Scholar] [CrossRef]
- TAMPERE IMAGE DATABASE 2013 TID2013, Version 1.0. Available online: http://www.ponomarenko.info/tid2013.htm (accessed on 10 April 2022).
- Kodak Lossless True Color Image Suite. Available online: http://r0k.us/graphics/kodak/ (accessed on 10 April 2022).
- Meden, B.; Rot, P.; Terhörst, P.; Damer, N.; Kuijper, A.; Scheirer, W.J.; Ross, A.; Peer, P.; Štruc, V. Privacy–Enhancing Face Biometrics: A Comprehensive Survey. IEEE Trans. Inf. Forensics Secur. 2021, 16, 4147–4183. [Google Scholar] [CrossRef]
- Zhou, X.; Ke, R.; Yang, H.; Liu, C. When Intelligent Transportation Systems Sensing Meets Edge Computing: Vision and Challenges. Appl. Sci. 2021, 11, 9680. [Google Scholar] [CrossRef]
- Debauche, O.; Mahmoudi, S.; Guttadauria, A. A New Edge Computing Architecture for IoT and Multimedia Data Management. Information 2022, 13, 89. [Google Scholar] [CrossRef]
- Abdul, W.; Ali, Z.; Ghouzali, S.; Alfawaz, B.; Muhammad, G.; Hossain, M.S. Biometric Security Through Visual Encryption for Fog Edge Computing. IEEE Access 2017, 5, 5531–5538. [Google Scholar] [CrossRef]
- Gao, R.; Li, S.; Gao, Y.; Guo, R. A lightweight cryptographic algorithm for the transmission of images from road environments in self-driving. Cybersecurity 2021, 4, 3. [Google Scholar] [CrossRef]
- Sachenko, A.; Kochan, V.; Kharchenko, V.; Yastrebenetsky, V.; Fesenko, H.; Yanovsky, M. NPP Post-Accident Monitoring System Based on Unmanned Aircraft Vehicle: Concept, Design Principle. Nucl. Radiat. Saf. 2017, 73, 24–29. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, W.Z.S.C.L.; Fu, J.; Yang, J.; Gao, B. Research Progress of Nuclear Emergency Response Robot. IOP Conf. Ser. Mater. Sci. Eng. 2018, 452, 042102. [Google Scholar] [CrossRef]
- Uddin, M.A.; Ayaz, M.; Mansour, A.; Aggoune, e.-H.; Sharif, Z.; Razzak, I. Cloud-connected flying edge computing for smart agriculture. Peer-to-Peer Netw. Appl. 2021, 14, 3405–3415. [Google Scholar] [CrossRef]
Source | Features |
---|---|
Y.-Q. Shi and H. Sun [25] |
|
K. Sayood [26] |
|
QOI [27] |
|
V. Makarichev, V. Lukin and I. Brysina [47] |
|
V. Makarichev and V. Kharchenko [48] |
|
V. Makarichev, I. Vasilyeva, V. Lukin, B. Vozel, A. Shelestov and N. Kussul [49] |
|
C.K. Chui and Q. Jiang [50] |
|
ADCT [51] |
|
AGU [52] |
|
UBMAD | Min (CR) | Average (CR) | Max (CR) |
---|---|---|---|
36 | 1.4651 | 1.6922 | 1.9062 |
63 | 1.5557 | 1.8066 | 2.0128 |
95 | 1.5091 | 1.7537 | 2.0029 |
155 | 1.4781 | 1.7093 | 1.9989 |
UBMAD | Min (CR) | Average (CR) | Max (CR) |
---|---|---|---|
4 | 1.5572 | 1.8656 | 2.0937 |
12 | 1.5979 | 1.8535 | 2.0896 |
20 | 1.5498 | 1.7427 | 2.0441 |
32 | 1.4934 | 1.6557 | 1.8381 |
UBMAD | Min (CR) | Average (CR) | Max (CR) |
---|---|---|---|
7 | 1.5313 | 1.7915 | 2.0071 |
14 | 1.5895 | 1.8818 | 2.1247 |
20 | 1.5789 | 1.8053 | 2.1248 |
32 | 1.4607 | 1.7048 | 2.0633 |
UBMAD | Min (CR) | Average (CR) | Max (CR) |
---|---|---|---|
10 | 1.5307 | 1.7920 | 2.2029 |
19 | 1.6311 | 1.8996 | 2.2062 |
22 | 1.5803 | 1.8256 | 2.1508 |
32 | 1.5073 | 1.7224 | 2.0439 |
UBMAD | Min (CR) | Average (CR) | Max (CR) |
---|---|---|---|
13 | 1.5091 | 1.7653 | 2.0112 |
25 | 1.5944 | 1.8879 | 2.1621 |
34 | 1.5799 | 1.8282 | 2.2003 |
50 | 1.4704 | 1.7355 | 2.1422 |
UBMAD | Min (CR) | Average (CR) | Max (CR) |
---|---|---|---|
16 | 1.4880 | 1.7371 | 1.9795 |
31 | 1.5899 | 1.8439 | 2.1490 |
56 | 1.5349 | 1.7685 | 2.1474 |
71 | 1.5029 | 1.7289 | 2.1159 |
Structure of DAT | UBMADmax |
---|---|
DAT1 of depth 5 | 63 |
DAT2 of depth 1 | 4 |
DAT2 of depth 2 | 14 |
DAT2 of depth 3 | 19 |
DAT2 of depth 4 | 25 |
DAT2 of depth 5 | 31 |
Compressor | Memory Expenses, KB |
---|---|
DAC with DAT1 of depth 5 | 7699 |
DAC with DAT2 of depth 1 | 7461 |
DAC with DAT2 of depth 2 | 7395 |
DAC with DAT2 of depth 3 | 7329 |
DAC with DAT2 of depth 4 | 7376 |
DAC with DAT2 of depth 5 | 7548 |
ZIP of source | 9159 |
PNG | 9745 |
TIFF | 10,578 |
source (BMP-files) | 13,824 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makarichev, V.; Lukin, V.; Illiashenko, O.; Kharchenko, V. Digital Image Representation by Atomic Functions: The Compression and Protection of Data for Edge Computing in IoT Systems. Sensors 2022, 22, 3751. https://doi.org/10.3390/s22103751
Makarichev V, Lukin V, Illiashenko O, Kharchenko V. Digital Image Representation by Atomic Functions: The Compression and Protection of Data for Edge Computing in IoT Systems. Sensors. 2022; 22(10):3751. https://doi.org/10.3390/s22103751
Chicago/Turabian StyleMakarichev, Viktor, Vladimir Lukin, Oleg Illiashenko, and Vyacheslav Kharchenko. 2022. "Digital Image Representation by Atomic Functions: The Compression and Protection of Data for Edge Computing in IoT Systems" Sensors 22, no. 10: 3751. https://doi.org/10.3390/s22103751
APA StyleMakarichev, V., Lukin, V., Illiashenko, O., & Kharchenko, V. (2022). Digital Image Representation by Atomic Functions: The Compression and Protection of Data for Edge Computing in IoT Systems. Sensors, 22(10), 3751. https://doi.org/10.3390/s22103751