Channel Phase Calibration for High-Resolution and Wide-Swath SAR Imaging with Doppler Spectrum Sharpness Optimization
<p>Geometry of azimuth multi-channel SAR.</p> "> Figure 2
<p>Spatial-time spectrum (<b>a</b>) without Doppler ambiguity and (<b>b</b>) with Doppler ambiguity.</p> "> Figure 3
<p>The flowchart of HRWS SAR imaging with phase calibration.</p> "> Figure 4
<p>Multi-channel SAR image results with different calibrations (horizontal azimuth, vertical range). (<b>a</b>) Result without calibration. (<b>b</b>) Result with subspace projection calibration. (<b>c</b>) Result with the proposed calibration.</p> "> Figure 4 Cont.
<p>Multi-channel SAR image results with different calibrations (horizontal azimuth, vertical range). (<b>a</b>) Result without calibration. (<b>b</b>) Result with subspace projection calibration. (<b>c</b>) Result with the proposed calibration.</p> "> Figure 5
<p>Enlarged target image results with different calibrations (horizontal azimuth, vertical range). (<b>a</b>) Result without calibration. (<b>b</b>) Result with subspace projection calibration. (<b>c</b>) Result with the proposed calibration.</p> "> Figure 6
<p>Azimuth profiles of ship targets from different calibrations.</p> "> Figure 7
<p>Azimuth ambiguity suppression of different calibrations under SNRs from −15 dB to 20 dB. (<b>a</b>) Results under SNR = −15 dB, (<b>b</b>) Results under SNR = −10 dB, (<b>c</b>) Results under SNR = −5 dB, (<b>d</b>) Results under SNR = 0 dB, (<b>e</b>) Results under SNR = 5 dB, (<b>f</b>) Results under SNR = 10 dB, (<b>g</b>) Results under SNR = 15 dB, (h) Results under SNR = 20 dB.</p> "> Figure 7 Cont.
<p>Azimuth ambiguity suppression of different calibrations under SNRs from −15 dB to 20 dB. (<b>a</b>) Results under SNR = −15 dB, (<b>b</b>) Results under SNR = −10 dB, (<b>c</b>) Results under SNR = −5 dB, (<b>d</b>) Results under SNR = 0 dB, (<b>e</b>) Results under SNR = 5 dB, (<b>f</b>) Results under SNR = 10 dB, (<b>g</b>) Results under SNR = 15 dB, (h) Results under SNR = 20 dB.</p> "> Figure 8
<p>AASRs with different SNRs.</p> ">
Abstract
:1. Introduction
2. HRWS Imaging with Azimuth Multi-Channel SAR Configuration
2.1. Azimuth Multi-Channel SAR Mathematical Model
2.2. Unambiguous Doppler Spectrum Reconstruction with Inverse-Filtering
3. Channel Phase Calibration with Maximum Sharpness Optimization
4. Experiments and Performance Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cantafio, L.J. Space-Based Radar Handbook; Artech House: Norwood, MA, USA, 1989. [Google Scholar]
- Gebert, N.; Krieger, G.; Moreira, A. Digital beamforming on receive: Techniques and optimization strategies for high-resolution wide-swath SAR imaging. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 564–592. [Google Scholar] [CrossRef] [Green Version]
- Krieger, G.; Gebert, N.; Moreira, A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing. IEEE Trans. Geosci. Remote Sens. 2008, 146, 31–46. [Google Scholar] [CrossRef] [Green Version]
- Younis, M.; Wiesbeck, W. Digital beamforming in SAR systems. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1735–1739. [Google Scholar] [CrossRef]
- Krieger, G.; Gebert, N.; Younis, M.; Patyuchenko, A.; Moreira, A. Advanced concepts for ultra-wide-swath SAR imaging. In Proceedings of the 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2–5 June 2008; pp. 1–4. [Google Scholar]
- Currie, A.; Brown, M.A. Wide-swath SAR. Proc. Inst. Electr. Eng. Feb. 1992, 139, 122–135. [Google Scholar] [CrossRef]
- Moreira, A.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.; Younis, M.; Lopez-Dekker, P.; Huber, S.; Villano, M.; Pardini, M.; Eineder, M.; et al. Tandem-L: A highly innovative bistatic SAR mission for global observation of dynamic processes on the Earth’s surface. IEEE Geosci. Remote Sens. Mag. 2015, 3, 8–23. [Google Scholar] [CrossRef]
- Sikaneta, I.; Gierull, C.H.; Cerutti-Maori, D. Optimum signal processing for multichannel SAR: With application to high-resolution wide-swath imaging. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6095–6109. [Google Scholar] [CrossRef]
- Griffiths, H.D.; Mancini, P. Ambiguity suppression in SAR using adaptive array techniques. In Proceedings of the 11th Annual International Geoscience and Remote Sensing Symposium (IGARSS ’91), Espoo, Finland, 3–6 June 1991; pp. 1015–1018. [Google Scholar]
- Krieger, G.; Gebert, N.; Moreira, A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling. IEEE Geosci. Remote Sens. Lett. 2004, 1, 260–264. [Google Scholar] [CrossRef] [Green Version]
- Goodman, N.A.; Lin, S.C.; Rajakrishna, D.; Stiles, J.M. Processing of multiple receiver, spaceborne arrays for wide-area SAR. IEEE Trans. Geosci. Remote Sens. 2002, 40, 841–852. [Google Scholar] [CrossRef]
- Li, Z.; Wang, H.; Bao, Z. Generation of wide-swath and high-resolution SAR Images from multichannel small spaceborne SAR system. IEEE Geosci. Remote Sens. Lett. 2005, 2, 82–86. [Google Scholar] [CrossRef]
- Yang, T.; Li, Z.; Suo, Z.; Liu, Y.; Bao, Z. Performance analysis for multi-channel HRWS SAR systems based on STAP approach. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1409–1413. [Google Scholar] [CrossRef]
- Li, Z.; Wang, H.; Bao, Z.; Liao, G. Performance improvement for constellation SAR using signal processing techniques. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 436–452. [Google Scholar]
- Liu, Y.; Li, Z.; Suo, Z.; Bao, Z. Azimuth resolution improvement of spaceborne SAR images with nearly non-overlapped Doppler bandwidth. In Proceedings of the IET International Radar Conference 2013, Xi’an, China, 14–16 April 2013; pp. 1–4. [Google Scholar]
- Yang, T.; Li, Z.; Liu, Y.; Bao, Z. Channel error estimation methods for multichannel SAR systems in azimuth. IEEE Geosci. Remote Sens. Lett. 2013, 10, 548–552. [Google Scholar] [CrossRef]
- Zhang, L.; Xing, M.D.; Qiu, C.W.; Bao, Z. Adaptive two-step calibration for high-resolution and wide-swath SAR imaging. IET Radar Sonar Navig. 2010, 4, 548–559. [Google Scholar] [CrossRef]
- Laskowski, P.; Bordoni, F.; Younis, M. Error analysis and calibration techniques for multichannel SAR instruments. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, VIC, Australia, 21–26 July 2013; pp. 4503–4506. [Google Scholar]
- Kim, J.; Younis, M.; Becker, D.; Wiesbeck, W. Experimental performance analysis of digital beam forming on synthetic aperture radar. In Proceedings of the 7th European Conference on Synthetic Aperture Radar, CD-ROM, Friedrichshafen, Germany, 2–5 June 2008. [Google Scholar]
- Guo, X.; Gao, Y.; Wang, K.; Liu, X. Improved Channel Error Calibration Algorithm for Azimuth Multichannel SAR Systems. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1022–1026. [Google Scholar] [CrossRef]
- Aifei, L.; Guisheng, L.; Lun, M.; Qing, X. An array error estimation method for constellation SAR systems. IEEE Geosci. Remote Sens. Lett. 2010, 7, 731–735. [Google Scholar]
- Martino, G.D.; Iodice, A.; Riccio, D.; Ruello, G. Filtering of Azimuth ambiguity in stripmap synthetic aperture radar images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 3967–3978. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Wang, R.; Deng, Y.; Xu, W.; Guo, L.; Hou, L. Azimuth ambiguity suppression with an improved reconstruction method based on antenna pattern for multichannel synthetic aperture radar systems. IET Radar Sonar Navigat. 2015, 9, 492–500. [Google Scholar] [CrossRef]
- Morrison, R.L.; Do, M.N.; Munson, D.C. SAR image autofocus by sharpness optimization: A theoretical study. IEEE Trans. Image Process. 2007, 16, 2309–2321. [Google Scholar] [CrossRef]
- Fienup, J.R. Synthetic-aperture radar autofocus by maximizing sharpness. Optic. Lett. 2000, 25, 221–223. [Google Scholar] [CrossRef]
- Thomas, K.J.; Alaa, K.A. Monotonic iterative algorithm for minimum-entropy autofocus. In Proceedings of the Adaptive Sensor Array Processing Workshop, Lexington, MA, USA, 6–7 June 2006; pp. 645–648. [Google Scholar]
- Berizzi, F.; Corsini, G. Autofocusing of inverse synthetic aperture radar images using contrast optimization. IEEE Trans. AES 1996, 32, 1185–1191. [Google Scholar] [CrossRef]
- Larry, A. Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Math 1996, 16, 1–3. [Google Scholar]
- Fletcher, R. Practical Methods of Optimization, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Cumming, I.G.; Wong, F.H. Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Artech House: Norwood, MA, USA, 2004. [Google Scholar]
Wavelength | Pulse Width | Sample Rate | Bandwidth | Azimuth Points | Range Points | PRF | Equivalent Velocity |
---|---|---|---|---|---|---|---|
0.056 m | 41.750 μs | 32.3 MHz | 30.1 MHz | 2048 | 2048 | 1257 Hz | 7062 m/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Huan, S.; Zhao, Z.; Wang, Z. Channel Phase Calibration for High-Resolution and Wide-Swath SAR Imaging with Doppler Spectrum Sharpness Optimization. Sensors 2022, 22, 1781. https://doi.org/10.3390/s22051781
Zhang M, Huan S, Zhao Z, Wang Z. Channel Phase Calibration for High-Resolution and Wide-Swath SAR Imaging with Doppler Spectrum Sharpness Optimization. Sensors. 2022; 22(5):1781. https://doi.org/10.3390/s22051781
Chicago/Turabian StyleZhang, Man, Sha Huan, Zeya Zhao, and Zhibin Wang. 2022. "Channel Phase Calibration for High-Resolution and Wide-Swath SAR Imaging with Doppler Spectrum Sharpness Optimization" Sensors 22, no. 5: 1781. https://doi.org/10.3390/s22051781
APA StyleZhang, M., Huan, S., Zhao, Z., & Wang, Z. (2022). Channel Phase Calibration for High-Resolution and Wide-Swath SAR Imaging with Doppler Spectrum Sharpness Optimization. Sensors, 22(5), 1781. https://doi.org/10.3390/s22051781