Noninvasive Methods for Fault Detection and Isolation in Internal Combustion Engines Based on Chaos Analysis
<p>Result of the symbol tree test for the sound signal under study.</p> "> Figure 2
<p>Result of the 0–1 test for chaos of the sound signal under study.</p> "> Figure 3
<p>Illustration of a three-level decomposition of a signal.</p> "> Figure 4
<p>Test signal for MRA.</p> "> Figure 5
<p>Wavelet decomposition coefficients—numerical calculation software (blue) and application (red).</p> "> Figure 6
<p>Error between the numerical calculation software and application results—wavelet decomposition.</p> "> Figure 7
<p>Sound acquisition system.</p> "> Figure 8
<p>Illustration of the developed system’s application.</p> "> Figure 9
<p>BPD fault (<b>left</b>) and BCL fault (<b>right</b>).</p> "> Figure 10
<p>FFT of the engine in neutral and in normal conditions.</p> "> Figure 11
<p>Wavelet (blue) and center frequency-based approximation.</p> "> Figure 12
<p>Schematic of the wavelet-based method for fault detection and isolation.</p> "> Figure 13
<p>Schematic of the wavelet-based method for fault detection and isolation.</p> "> Figure 14
<p>Acquisition of a single tone signal—1500 Hz sine wave.</p> "> Figure 15
<p>FFT of a single tone signal—1500 Hz sine wave.</p> "> Figure 16
<p>Acquisition of a two-tone signal: F1 = 600 Hz/F2 = 1000 Hz.</p> "> Figure 17
<p>FFT of a two-tone signal: F1 = 600 Hz/F2 = 1000 Hz.</p> "> Figure 18
<p>Acquisition of an AM signal—carrier: 1 kHz/modulator: 100 Hz.</p> "> Figure 19
<p>FFT of an AM signal—carrier: 1 kHz/modulator: 100 Hz.</p> "> Figure 20
<p>Samples of the studied signals—Normal, SCM, DCM and BCL.</p> "> Figure 21
<p>Samples of the studied signals—BPD, BS, BCL + SCM and BCL + DCM.</p> "> Figure 22
<p>Samples of the studied signals—BPD + SCM, BPD + DCM, BS + SCM and BS + DCM.</p> "> Figure 23
<p>MD10 values—single and double/simultaneous faults.</p> "> Figure 24
<p>AD10 values—single and double/simultaneous faults.</p> "> Figure 25
<p>SD10 values—single and double/simultaneous faults.</p> "> Figure 26
<p>ANN training algorithm performance for wavelet AMR-based strategy.</p> "> Figure 27
<p>FD values for the Petrosian a method.</p> "> Figure 28
<p>FD values for the Petrosian b method.</p> "> Figure 29
<p>FD values for the Petrosian c method.</p> "> Figure 30
<p>ANN training algorithm performance for FD-based strategy.</p> "> Figure 31
<p>Overall app performance—wavelet MRA-based strategy.</p> "> Figure 32
<p>Overall app performance—FD-based strategy.</p> ">
Abstract
:1. Introduction
2. Classification of Chaotic Signals
2.1. Overview
2.2. Verification of the Chaotic Behavior of the Vehicle’s Sound Signal
3. Wavelet Approach
3.1. Discrete Wavelet Transform
3.2. Wavelet Algorithm Validation
4. Methodology
4.1. Sound Signal Acquisition and Processing System
4.2. Studied Faults
4.3. Experimental Procedures
4.4. DWT Configuration
4.5. Applied Fractal Dimension
- (a)
- Average method—the value of the binary representation is assigned 1 if the value of the time series sample is above the signal average and 0 otherwise;
- (b)
- Modified zone method—the value of the binary representation is assigned a value of 1 if the value of the time series sample is outside the limits of the mean plus or minus the standard deviation and 0 otherwise;
- (c)
- “Differential” method—the binary representation sample receives the value 1 if the difference between two consecutive samples of the time series is positive and 0 if it is negative.
4.6. Classification Algorithm
- (a)
- Fault detection: to indicate the presence of faults;
- (b)
- Fault Isolation: to determine the location of faults after their detection;
- (c)
- Identification of failures: to determine the degree of severity of failures and the time-varying behavior of failures.
5. Results and Discussion
5.1. Acquisition System Tests
- -
- Signals with known characteristics are emitted by a sound source and captured by the developed acquisition system;
- -
- The captured audio is compared with the original signal to see if the main characteristics in the time domain are maintained;
- -
- Finally, FFTs of the original signal and the recorded signal are performed, in order to observe whether the frequency domain characteristics are preserved;
5.2. Wavelet-Based Fault Detection and Isolation Technique
5.3. Fault Detection and Isolation Technique Based on Fractal Dimensions
5.4. Evaluation of the Application’s Overall Performance
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Monetary Fund. World Economic Outlook Database. Available online: https://bit.ly/2TU4SN7 (accessed on 12 February 2021).
- World Health Organization. Global Status Report on Road Safety 2015; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Shen, Y.; Luo, J. Design and implementation of vehicle fault diagnosis system for intelligent travel. In Proceedings of the IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS’14), Shenzhen, China, 27–29 November 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 553–558. [Google Scholar]
- Zhang, M.; Chen, C.; Wo, T.; Xie, T.; Bhuiyan, M.Z.A.; Lin, X. Safedrive: Online driving anomaly detection from large-scale vehicle data. IEEE Trans. Ind. Inform. 2017, 13, 2087–2096. [Google Scholar] [CrossRef]
- Wu, Z.J.; Naik, S.M. Dsp applications in engine control and onboard diagnostics: Enabling greener automobiles. IEEE Signal Process. Mag. 2017, 34, 70–81. [Google Scholar] [CrossRef]
- Charles, P.; Sinha, J.K.; Gu, F.; Lidstone, L.; Ball, A.D. Detecting the crankshaft torsional vibration of diesel engines for combustion related diagnosis. J. Sound Vib. 2009, 321, 1171–1185. [Google Scholar] [CrossRef]
- Lowe, D.P.; Lin, T.R.; Wu, W.; Tan, A.C. Diesel knock combustion and its detection using acoustic emission. J. Acoust. Emiss. 2011, 29, 78–88. [Google Scholar]
- Rizvi, M.A.; Bhatti, A.I.; Butt, Q.R. Hybrid model of the gasoline engine for misfire detection. IEEE Trans. Ind. Electron. 2010, 58, 3680–3692. [Google Scholar] [CrossRef]
- Helm, S.; Kozek, M.; Jakubek, S. Combustion torque estimation and misfire detection for calibration of combustion engines by parametric kalman filtering. IEEE Trans. Ind. Electron. 2012, 59, 4326–4337. [Google Scholar] [CrossRef]
- Jiang, Y.; Yin, S. Recursive total principle component regression based fault detection and its application to vehicular cyberphysical systems. IEEE Trans. Ind. Informat. 2018, 14, 1415–1423. [Google Scholar] [CrossRef]
- Barkai, J. Vehicle Diagnostics-Are You Ready for the Challenge? Technical Report; SAE Technical Paper: Warrendale, PA, USA, 2001. [Google Scholar]
- Wong, P.K.; Zhong, J.; Yang, Z.-X.; Vong, C.M. Sparse bayesian extreme learning committee machine for engine simultaneous fault diagnosis. Neurocomputing 2016, 174, 331–343. [Google Scholar] [CrossRef]
- Delvecchio, S.; Bonfiglio, P.; Pompoli, F. Vibro-acoustic condition monitoring of internal combustion engines: A critical review of existing techniques. Mech. Syst. Signal Process. 2018, 99, 661–683. [Google Scholar] [CrossRef]
- Shatnawi, Y.; Al-Khassaweneh, M. Fault diagnosis in internal combustion engines using extension neural network. IEEE Trans. Ind. Electron. 2013, 61, 1434–1443. [Google Scholar] [CrossRef]
- Agrawal, D.; Bisdikian, C.; Ko, B.J.; Lee, K.-w.; Pappas, V. Method for Vehicle Fault Diagnosis Using Audio Sensors. U.S. Patent Application No. 11/971,419, 9 July 2009. [Google Scholar]
- Albarbar, A.; Gu, F.; Ball, A.D.; Starr, A. Acoustic monitoring of engine fuel injection based on adaptive filtering techniques. Appl. Acoust. 2010, 71, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.S.; Ma, Q.H.; Zhu, Q.; Liu, X.T.; Zhao, L.H. An intelligent approach for engine fault diagnosis based on hilbert-huang transform and support vector machine. Appl. Acoust. 2014, 75, 1–9. [Google Scholar] [CrossRef]
- Bao, G.; Zeng, F.; Sun, H. Design of a short-circuit detection intelligent release using discrete wavelet algorithm. IEEE Access 2019, 7, 104228–104240. [Google Scholar] [CrossRef]
- Jayamaha, D.K.J.S.; Lidula, N.W.A.; Rajapakse, A.D. Wavelet-multi resolution analysis based ann architecture for fault detection and localization in dc microgrids. IEEE Access 2019, 7, 145371–145384. [Google Scholar] [CrossRef]
- Sprott, J.C. Chaos and Time-Series Analysis; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Lih, J.-S.; Ko, J.-Y.; Chern, J.-L.; Jiang, I.-M. Determinism test and noise estimate for a complex time series. EPL Europhys. Lett. 1997, 40, 7–12. [Google Scholar] [CrossRef]
- Rosso, O.; Larrondo, H.; Martin, M.; Plastino, A.; Fuentes, M. Distinguishing noise from chaos. Phys. Rev. Lett. 2007, 99, 154102. [Google Scholar] [CrossRef] [Green Version]
- Zunino, L.; Soriano, M.C.; Rosso, O.A. Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach. Phys. Rev. E 2012, 86, 046210. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.; Gore, J.; Peterson, B. A method for determinism in short time series, and its application to stationary eeg. IEEE Trans. Biomed. Eng. 2002, 49, 1374–1379. [Google Scholar] [CrossRef]
- Xie, H.-B.; Guo, J.-Y.; Zheng, Y.-P. Using the modified sample entropy to detect determinism. Phys. Lett. A 2010, 374, 3926–3931. [Google Scholar] [CrossRef]
- Chon, K.H.; Kanters, J.K.; Cohen, R.J.; Holstein-Rathlou, N.-H. Detection of chaotic determinism in time series from randomly forced maps. Phys. D Nonlinear Phenom. 1997, 99, 471–486. [Google Scholar] [CrossRef]
- Ouyang, G.; Li, X.; Dang, C.; Richards, D.A. Using recurrence plot for determinism analysis of eeg recordings in genetic absence epilepsy rats. Clin. Neurophysiol. 2008, 119, 1747–1755. [Google Scholar] [CrossRef]
- Kulp, C.W.; Zunino, L. Discriminating chaotic and stochastic dynamics through the permutation spectrum test. Chaos Interdiscip. J. Nonlinear Sci. 2014, 24, 033116. [Google Scholar] [CrossRef] [Green Version]
- Sprott, J.C. Elegant Chaos: Algebraically Simple Chaotic Flows; World Scientific: Singapore, 2010. [Google Scholar]
- Garnett, P.W. Chaos Theory Tamed; Joseph Henry Press: Washington, DC, USA, 1997. [Google Scholar]
- Gottwald, G.A.; Melbourne, I. On the implementation of the 0–1 test for chaos. SIAM J. Appl. Dyn. Syst. 2009, 8, 129–145. [Google Scholar] [CrossRef]
- Arjunan, S.P.; Kumar, D.K. Fractal theory based non-linear analysis of semg. In Proceedings of the IEEE International Conference on Intelligent Sensors, Sensor Networks and Information (ISSNIP’07), Melbourne, Australia, 3–6 December 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 545–548. [Google Scholar]
- Parish, J. Nonlinear dynamics techniques in signal processing. In Proceedings of the IEEE Workshop on Statistical Signal and Array Processing, Victoria, BC, Canada, 7–9 October 1992; IEEE: Piscataway, NJ, USA, 1992; pp. 498–503. [Google Scholar]
- Ahmad, R.F.; Malik, A.S.; Kamel, N.; Amin, H.; Zafar, R.; Qayyum, A.; Reza, F. Discriminating the different human brain states with eeg signals using fractal dimension: A nonlinear approach. In Proceedings of the IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA’14), Kuala Lumpur, Malaysia, 25 November 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–5. [Google Scholar]
- Layek, G. An Introduction to Dynamical Systems and Chaos; Springer: New Delhi, India, 2015. [Google Scholar]
- Ahmadlou, M.; Adeli, H.; Adeli, A. Fractality and a waveletchaos-neural network methodology for eeg-based diagnosis of autistic spectrum disorder. J. Clin. Neurophysiol. 2010, 27, 328–333. [Google Scholar] [CrossRef]
- Soleimani, A.; Khadem, S. Early fault detection of rotating machinery through chaotic vibration feature extraction of experimental data sets. Chaos Solitons Fractals 2015, 78, 61–75. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y.; Zhu, Y. Intelligent fault diagnosis of rolling element bearing based on svms and fractal dimension. Mech. Syst. Signal Process. 2007, 21, 2012–2024. [Google Scholar] [CrossRef]
- Pitsikalis, V.; Maragos, P. Analysis and classification of speech signals by generalized fractal dimension features. Speech Commun. 2009, 51, 1206–1223. [Google Scholar] [CrossRef] [Green Version]
- Cervantes-De la Torre, F.; Gonzalez-Trejo, J.; Real-Ramirez, C.; Hoyos-Reyes, L. Fractal dimension algorithms and their application to time series associated with natural phenomena. J. Phys. Conf. Ser. 2013, 475, 012002. [Google Scholar] [CrossRef]
- Higuchi, T. Approach to an irregular time series on the basis of the fractal theory. Phys. D Nonlinear Phenom. 1988, 31, 277–283. [Google Scholar] [CrossRef]
- Katz, M.J. Fractals and the analysis of waveforms. Comput. Biol. Med. 1988, 18, 145–156. [Google Scholar] [CrossRef]
- Sevcik, C. A procedure to estimate the fractal dimension of waveforms, Complexity International 5. arXiv 1998, arXiv:1003.5266. [Google Scholar]
- Kulp, C.; Smith, S. Characterization of noisy symbolic time series. Phys. Rev. E 2011, 83, 026201. [Google Scholar] [CrossRef]
- Mallat, S.M. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef] [Green Version]
- Misiti, M.; Misiti, Y.; Oppenheim, G.; Poggi, J.-M. Wavelet Toolbox 4—User’s Guide; The MathWorks: Natick, MA, USA, 2009. [Google Scholar]
- Gilles, T. Automotive Engines: Diagnosis, Repair, and Rebuilding; Cengage Learning: Boston, MA, USA, 2018. [Google Scholar]
- Scacchioli, A.; Rizzoni, G.; Salman, M.A.; Li, W.; Onori, S.; Zhang, X. Model-based diagnosis of an automotive electric power generation and storage system. IEEE Trans. Syst. Man Cybern. Syst. 2014, 44, 72–85. [Google Scholar] [CrossRef]
- Yinhui, W.; Kaisheng, H.; ZhiHua, L.; Fanbo, M. Advanced gasoline engine misfire diagnostic method based on crankshaft speed multiple filtering. In Proceedings of the IEEE International Conference on Electric Information and Control Engineering (ICEICE’11), Wuhan, China, 15–17 April 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1964–1968. [Google Scholar]
- Mallat, S.M. A Wavelet Tour of Signal Processing; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Kandaswamy, A.; Kumar, C.S.; Ramanathan, R.; Jayaraman, S.; Malmurugan, N. Neural classification of lung sounds using wavelet coefficients. Comput. Biol. Med. 2004, 34, 523–537. [Google Scholar] [CrossRef]
- Petrosian, A. Kolmogorov complexity of finite sequences and recognition of different preictal eeg patterns. In Proceedings of the IEEE Symposium on Computer-Based Medical Systems, Lubbock, TX, USA, 9–10 June 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 212–217. [Google Scholar]
- Scacchioli, A.; Rizzoni, G.; Oisu, P. Hierarchical Model-Based Fault Diagnosis for an Electrical Power Generation Storage Automotive System. In Proceedings of the American Control Conference, New York, NY, USA, 9–13 July 2007; pp. 2991–2996. [Google Scholar]
Decomposed Signal | Frequency Range (Hz) |
---|---|
D1 | 11.025–22.050 |
D2 | 5512.5–11.025 |
D3 | 2756.25–5512.5 |
D4 | 1378.12–2756.25 |
D5 | 689.06–1378.12 |
D6 | 344.53–689.06 |
D7 | 172.26–344.53 |
D8 | 86.13–172.26 |
D9 | 43.06–86.13 |
D10 | 21.53–43.06 |
Neuron Outputs | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Condition | N1 | N2 | N3 | N4 | N5 | N6 | N7 | N8 | N9 | N10 | N11 | N12 |
Normal (N) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
SCM | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
DCM | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
BPD | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
BCL | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
BS | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
BCL + SCM | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
BCL + DCM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
BPD + SCM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
BPD + DCM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
BS + SCM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
BS + DCM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Test Signal | Characteristic |
---|---|
Single tone—Sinusoidal | Fundamental Frequency = 1500 Hz |
Two tones | F1 = 600 Hz/F2 = 1 kHz |
AM signal | Carrier: 1 kHz/Modulator: 100 Hz |
Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|
MD10 | SD10 | AD10 | |||||||
Conditions | Min | Med | Max | Min | Med | Max | Min | Med | Max |
Normal (N) | 0.19488 | 0.20876 | 0.21511 | 0.23106 | 0.24758 | 0.25454 | 0.05290 | 0.06073 | 0.06416 |
SCM | 0.31622 | 0.33066 | 0.33831 | 0.38056 | 0.39690 | 0.40572 | 0.14341 | 0.15606 | 0.16299 |
DCM | 0.40116 | 0.41845 | 0.42683 | 0.46469 | 0.52628 | 0.53641 | 0.26960 | 0.27919 | 0.28705 |
BPD | 0.05792 | 0.07651 | 0.08451 | 0.07176 | 0.09593 | 0.10540 | 0.00510 | 0.00922 | 0.01101 |
BCL | 0.27026 | 0.30302 | 0.31749 | 0.33278 | 0.36431 | 0.38114 | 0.10968 | 0.13159 | 0.14413 |
BS | 0.35006 | 0.35731 | 0.36290 | 0.40071 | 0.41851 | 0.42416 | 0.16042 | 0.17358 | 0.17824 |
BCL + SCM | 0.38449 | 0.42022 | 0.44873 | 0.47875 | 0.50758 | 0.53949 | 0.22694 | 0.25828 | 0.28879 |
BCL + DCM | 0.46379 | 0.48876 | 0.50245 | 0.59556 | 0.61262 | 0.62177 | 0.35201 | 0.37393 | 0.38459 |
BPD + SCM | 0.09333 | 0.10495 | 0.10989 | 0.11952 | 0.13464 | 0.14136 | 0.01423 | 0.01804 | 0.01979 |
BPD + DCM | 0.10878 | 0.12028 | 0.12551 | 0.13605 | 0.14904 | 0.15606 | 0.01833 | 0.02230 | 0.02537 |
BS + SCM | 0.43666 | 0.50717 | 0.52827 | 0.56887 | 0.61714 | 0.63686 | 0.32429 | 0.37767 | 0.40188 |
BS + DCM | 0.37198 | 0.39480 | 0.40360 | 0.45845 | 0.48814 | 0.49585 | 0.20812 | 0.23606 | 0.24349 |
Predicted Class | Target Class | Precision (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | SCM | DCM | BPD | BCL | BS | BCL + SCM | BCL + DCM | BPD + SCM | BPD + DCM | BS + SCM | BS + DCM | ||
Normal (N) | 120 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
SCM | 0 | 117 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 99.15 |
DCM | 0 | 0 | 120 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
BPD | 0 | 0 | 0 | 120 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
BCL | 0 | 3 | 0 | 0 | 119 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 97.54 |
BS | 0 | 0 | 0 | 0 | 0 | 120 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
BCL + SCM | 0 | 0 | 0 | 0 | 0 | 0 | 112 | 0 | 0 | 0 | 0 | 2 | 98.24 |
BCL + DCM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 120 | 0 | 0 | 4 | 0 | 96.77 |
BPD + SCM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 120 | 5 | 0 | 0 | 96 |
BPD + DCM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 115 | 0 | 0 | 100 |
BS + SCM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 116 | 0 | 100 |
BS + DCM | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 118 | 93.65 |
Recall (%) | 100 | 97.50 | 100 | 100 | 99.16 | 100 | 93.33 | 100 | 100 | 95.83 | 96.66 | 98.33 | |
Accuracy (%) | 98.40 |
Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|
FD—Petrosian a | FD—Petrosian b | FD—Petrosian c | |||||||
Conditions | Min | Med | Max | Min | Med | Max | Min | Med | Max |
Normal (N) | 1.00071 | 1.00080 | 1.00085 | 1.00110 | 1.00118 | 1.00122 | 1.01476 | 1.01513 | 1.01533 |
SCM | 1.00047 | 1.00051 | 1.00053 | 1.00095 | 1.00103 | 1.00106 | 1.01417 | 1.01436 | 1.01453 |
DCM | 1.00036 | 1.00041 | 1.00044 | 1.00068 | 1.00077 | 1.00082 | 1.01302 | 1.01325 | 1.01351 |
BPD | 1.00103 | 1.00116 | 1.00127 | 1.00154 | 1.00183 | 1.00192 | 1.01221 | 1.01236 | 1.01248 |
BCL | 1.00050 | 1.00058 | 1.00063 | 1.00076 | 1.00091 | 1.00099 | 1.01499 | 1.01524 | 1.01538 |
BS | 1.00045 | 1.00049 | 1.00050 | 1.00082 | 1.00091 | 1.00096 | 1.01577 | 1.01589 | 1.01598 |
BCL + SCM | 1.00032 | 1.00035 | 1.00038 | 1.00083 | 1.00088 | 1.00090 | 1.01483 | 1.01501 | 1.01522 |
BCL + DCM | 1.00055 | 1.00059 | 1.00061 | 1.00048 | 1.00052 | 1.00054 | 1.01249 | 1.01268 | 1.01288 |
BPD + SCM | 1.00171 | 1.00175 | 1.00178 | 1.00219 | 1.00225 | 1.00230 | 1.01256 | 1.01263 | 1.01270 |
BPD + DCM | 1.00095 | 1.00100 | 1.00104 | 1.00143 | 1.00149 | 1.00153 | 1.01090 | 1.01100 | 1.01108 |
BS + SCM | 1.00037 | 1.00041 | 1.00044 | 1.00080 | 1.00085 | 1.00089 | 1.01470 | 1.01486 | 1.01497 |
BS + DCM | 1.00046 | 1.00053 | 1.00056 | 1.00075 | 1.00081 | 1.00083 | 1.01376 | 1.01401 | 1.01410 |
Predicted Class | Target Class | Precision (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | SCM | DCM | BPD | BCL | BS | BCL + SCM | BCL + DCM | BPD + SCM | BPD + DCM | BS + SCM | BS + DCM | ||
Normal (N) | 120 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
SCM | 0 | 118 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 97.52 |
DCM | 0 | 0 | 120 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
BPD | 0 | 0 | 0 | 120 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 |
BCL | 0 | 1 | 0 | 0 | 117 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 99.15 |
BS | 0 | 1 | 0 | 0 | 0 | 120 | 0 | 0 | 0 | 0 | 0 | 0 | 99.17 |
BCL + SCM | 0 | 0 | 0 | 0 | 0 | 0 | 118 | 0 | 0 | 0 | 5 | 0 | 95.93 |
BCL + DCM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 120 | 0 | 0 | 0 | 0 | 100 |
BPD + SCM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 120 | 0 | 0 | 0 | 100 |
BPD + DCM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 120 | 0 | 0 | 100 |
BS + SCM | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 115 | 0 | 98.29 |
BS + DCM | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 120 | 100 |
Recall (%) | 100 | 98.33 | 100 | 100 | 97.50 | 100 | 98.33 | 100 | 100 | 100 | 95.83 | 100 | |
Accuracy (%) | 99.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, T.L.d.V.; Filho, A.C.L.; Belo, F.A.; Souto, F.V.; Silva, T.C.B.; Mishina, K.V.; Rodrigues, M.C. Noninvasive Methods for Fault Detection and Isolation in Internal Combustion Engines Based on Chaos Analysis. Sensors 2021, 21, 6925. https://doi.org/10.3390/s21206925
Lima TLdV, Filho ACL, Belo FA, Souto FV, Silva TCB, Mishina KV, Rodrigues MC. Noninvasive Methods for Fault Detection and Isolation in Internal Combustion Engines Based on Chaos Analysis. Sensors. 2021; 21(20):6925. https://doi.org/10.3390/s21206925
Chicago/Turabian StyleLima, Thyago L. de V., Abel C. L. Filho, Francisco A. Belo, Filipe V. Souto, Thaís C. B. Silva, Koje V. Mishina, and Marcelo C. Rodrigues. 2021. "Noninvasive Methods for Fault Detection and Isolation in Internal Combustion Engines Based on Chaos Analysis" Sensors 21, no. 20: 6925. https://doi.org/10.3390/s21206925