Multiplexed Weak Waist-Enlarged Fiber Taper Curvature Sensor and Its Rapid Inline Fabrication
<p>Schematic of WWFT and its fabrication: (<b>a</b>) Schematic of WWFT and the constructed intermodal interferometer; (<b>b</b>) Inline fabrication of WWFT; (<b>c</b>) XY side views of the fiber taper with overlap of 20 μm. The red circle represents the fiber taper location.</p> "> Figure 2
<p>Experiment setup of WWFT-based interferometer. ASE: amplified spontaneous emission, CCD: charge-coupled device, WWFT: weak waist-enlarged fiber taper.</p> "> Figure 3
<p>Transmission spectra of WWFT-based interferometers with different overlap values of (<b>a</b>) 10 μm, (<b>b</b>) 20 μm and (<b>c</b>) 30 μm, respectively.</p> "> Figure 4
<p>(<b>a</b>) Spectra after FFT for the WWFT-based interferometers with different interferometer lengths, inset: Electric field distributions of LP<sub>01</sub> and LP<sub>11</sub> mode; (<b>b</b>) Optical path difference versus interferometer length with overlaps of 10 μm, 20 μm and 30 μm, respectively.</p> "> Figure 5
<p>(<b>a</b>) Schematic of curvature test for the two cascaded WWFT-based interferometers; (<b>b</b>) Spectra and (<b>c</b>) Spectra after FFT for the WWFT-based interferometer 1# and 2# at 0° direction and 90° direction, respectively.</p> "> Figure 6
<p>Phase responses of the WWFT-based interferometer 1# and sensor 2# in (<b>a</b>) 0° direction and (<b>b</b>) 90° direction; (<b>c</b>) Phase shift versus curvature in 0° and 90° direction.</p> "> Figure 7
<p>Temperature cross-sensitivity of WWFT-based interferometer: (<b>a</b>) Transmission spectra as temperature increases from 22 °C to 37.5 °C; (<b>b</b>) Phase shift versus temperature for the sensor with <span class="html-italic">L</span> = 41.2 mm and <span class="html-italic">L</span><sub>vp</sub> = 20 μm; (<b>c</b>) Continuous monitoring of phase fluctuation at 22.0 °C.</p> ">
Abstract
:1. Introduction
2. Sensor Fabrication
3. Spectral Characterization of WWFT-Based Interferometer
4. Results and Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zhu, M.; Xie, M.; Lu, X.; Okada, S.; Kawamura, S. A Soft Robotic Finger with Self-Powered Triboelectric Curvature Sensor Based on Multi-Material 3D Printing. Nano Energy 2020, 73, 104772. [Google Scholar] [CrossRef]
- Xiong, C.; Lu, X.; Lin, X. Damage Assessment of Shear Wall Components for RC Frame–Shear Wall Buildings Using Story Curvature as Engineering Demand Parameter. Eng. Struct. 2019, 189, 77–88. [Google Scholar] [CrossRef]
- Wang, L.; Xie, C.; Lin, Y.; Zhou, H.-Y.; Chen, K.; Cheng, D.; Dubost, F.; Collery, B.; Khanal, B.; Khanal, B.; et al. Evaluation and Comparison of Accurate Automated Spinal Curvature Estimation Algorithms with Spinal Anterior-Posterior X-Ray Images: The AASCE2019 Challenge. Med Image Anal. 2021, 72, 102115. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, S.; Zhang, S.; Feng, M.; Wu, S.; Jin, R.; Zhang, L.; Lu, P. An Inline Fiber Curvature Sensor Based on Anti-Resonant Reflecting Guidance in Silica Tube. Opt. Laser Technol. 2019, 111, 407–410. [Google Scholar] [CrossRef]
- Barrera, D.; Madrigal, J.; Sales, S. Long Period Gratings in Multicore Optical Fibers for Directional Curvature Sensor Implementation. J. Lightwave Technol. JLT 2018, 36, 1063–1068. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, A.; Guo, H.; Zhao, Y.; Yuan, L. Highly Sensitive Vector Curvature Sensor Based on a Triple-Core Fiber Interferometer. OSA Contin. OSAC 2019, 2, 1953–1963. [Google Scholar] [CrossRef]
- Marrujo-García, S.; Hernández-Romano, I.; Torres-Cisneros, M.; May-Arrioja, D.A.; Minkovich, V.P.; Monzón-Hernández, D. Temperature-Independent Curvature Sensor Based on In-Fiber Mach–Zehnder Interferometer Using Hollow-Core Fiber. J. Lightwave Technol. JLT 2020, 38, 4166–4173. [Google Scholar]
- Zhang, C.; Zhao, J.; Miao, C.; Shen, Z.; Li, H.; Zhang, M. High-Sensitivity All Single-Mode Fiber Curvature Sensor Based on Bulge-Taper Structures Modal Interferometer. Opt. Commun. 2015, 336, 197–201. [Google Scholar] [CrossRef]
- Gong, H.; Song, H.; Li, X.; Wang, J.; Dong, X. An Optical Fiber Curvature Sensor Based on Photonic Crystal Fiber Modal Interferometer. Sens. Actuators A Phys. 2013, 195, 139–141. [Google Scholar] [CrossRef]
- Chen, E.; Dong, B.; Li, Y.; Wang, X.; Zhao, Y.; Xu, W.; Zhao, W.; Wang, Y. Cascaded Few-Mode Fiber down-Taper Modal Interferometers and Their Application in Curvature Sensing. Opt. Commun. 2020, 475, 126274. [Google Scholar] [CrossRef]
- Xu, S.; Chen, H.; Feng, W. Fiber-Optic Curvature and Temperature Sensor Based on the Lateral-Offset Spliced SMF-FCF-SMF Interference Structure. Opt. Laser Technol. 2021, 141, 107174. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, Y.; Qu, Y.; Su, H.; Jiang, W.; Guo, Y.; Qi, K. Fabry-Perot Vector Curvature Sensor Based on Cavity Length Demodulation. Opt. Fiber Technol. 2020, 60, 102382. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.; Harris, E.; Bao, X. Double-Pass In-Line Fiber Taper Mach–Zehnder Interferometer Sensor. IEEE Photonics Technol. Lett. 2010, 22, 1750–1752. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, B.; Liu, J.; Xie, C.; Wan, S.; He, X.; Zhang, X.; Wu, Q. Investigation of a Side-Polished Fiber MZI and Its Sensing Performance. IEEE Sens. J. 2020, 20, 5909–5914. [Google Scholar] [CrossRef]
- Shaklan, S.; Reynaud, F.; Froehly, C. Multimode Fiber-Optic Broad Spectral Band Interferometer. Appl. Opt. AO 1992, 31, 749–756. [Google Scholar] [CrossRef]
- Geng, Y.; Li, X.; Tan, X.; Deng, Y.; Yu, Y. High-Sensitivity Mach–Zehnder Interferometric Temperature Fiber Sensor Based on a Waist-Enlarged Fusion Bitaper. IEEE Sens. J. 2011, 11, 2891–2894. [Google Scholar] [CrossRef]
- Xu, F.; Li, C.; Ren, D.; Lu, L.; Lv, W.; Feng, F.; Yu, B. Temperature-Insensitive Mach-Zehnder Interferometric Strain Sensor Based on Concatenating Two Waist-Enlarged Fiber Tapers. Chin. Opt. Lett. COL 2012, 10, 070603. [Google Scholar]
- Dash, J.N.; Jha, R.; Das, R. Enlarge-Tapered, Micro-Air Channeled Cavity for Refractive Index Sensing in SMF. J. Lightwave Technol. JLT 2019, 37, 5422–5427. [Google Scholar] [CrossRef]
- Fu, H.; Zhao, N.; Shao, M.; Yan, X.; Li, H.; Liu, Q.; Gao, H.; Liu, Y.; Qiao, X. In-Fiber Quasi-Michelson Interferometer Based on Waist-Enlarged Fiber Taper for Refractive Index Sensing. IEEE Sens. J. 2015, 15, 6869–6874. [Google Scholar] [CrossRef]
- An, J.; Jin, Y.; Sun, M.; Dong, X. Relative Humidity Sensor Based on SMS Fiber Structure with Two Waist-Enlarged Tapers. IEEE Sens. J. 2014, 14, 2683–2686. [Google Scholar] [CrossRef]
- Snyder, A.W.; Love, J.D. Optical Waveguide Theory; Springer: Boston, MA, USA, 1984. [Google Scholar]
- Ge, Y.; Wang, M.; Chen, X.; Rong, H. An optical MEMS pressure sensor based on a phase demodulation method. Sens. Actuators A Phys. 2008, 143, 224–229. [Google Scholar] [CrossRef]
- Gong, Y.; Zhao, T.; Rao, Y.-J.; Wu, Y. All-Fiber Curvature Sensor Based on Multimode Interference. IEEE Photonics Technol. Lett. 2011, 23, 679–681. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, D.; Wang, L.; Geng, Y.; Du, Y.; Li, X.; Hong, X. Multiplexed Weak Waist-Enlarged Fiber Taper Curvature Sensor and Its Rapid Inline Fabrication. Sensors 2021, 21, 6782. https://doi.org/10.3390/s21206782
Yi D, Wang L, Geng Y, Du Y, Li X, Hong X. Multiplexed Weak Waist-Enlarged Fiber Taper Curvature Sensor and Its Rapid Inline Fabrication. Sensors. 2021; 21(20):6782. https://doi.org/10.3390/s21206782
Chicago/Turabian StyleYi, Duo, Lina Wang, Youfu Geng, Yu Du, Xuejin Li, and Xueming Hong. 2021. "Multiplexed Weak Waist-Enlarged Fiber Taper Curvature Sensor and Its Rapid Inline Fabrication" Sensors 21, no. 20: 6782. https://doi.org/10.3390/s21206782
APA StyleYi, D., Wang, L., Geng, Y., Du, Y., Li, X., & Hong, X. (2021). Multiplexed Weak Waist-Enlarged Fiber Taper Curvature Sensor and Its Rapid Inline Fabrication. Sensors, 21(20), 6782. https://doi.org/10.3390/s21206782