Satellite-Assisted Cell-Free Massive MIMO Systems with Multi-Group Multicast
<p>System Configuration.</p> "> Figure 2
<p>SE against SNR with MRT and ZF beamforming under ideal and non-ideal CSI.</p> "> Figure 3
<p>SE against SNR with MRT and ZF beamforming.</p> "> Figure 4
<p>SE against downlink transmitted power under satellite-assisted multicast and only terrestrial multicast.</p> "> Figure 5
<p>System spectral efficiency of different group size.</p> ">
Abstract
:1. Introduction
- We consider a multi-group multicast scheme in satellite-assisted cell-free massive MIMO systems. We use common pilot scheme to estimate satellite and terrestrial channel.
- With the estimated CSI, the closed-form expressions of the SE of multicast users with maximum ratio transmission (MRT) and zero-forcing (ZF) precoding schemes in satellite-assisted cell-free massive MIMO are derived. The SE of satellite-assisted cell-free massive MIMO multicast systems is analyzed.
- The accuracy of the derived closed-form expressions and the effectiveness of the multi-group multicast transmission scheme in satellite-assisted cell-free massive MIMO systems are verified. Insightful conclusion can be drawn that satellite-assisted can relieve terrestrial pressure and multicast can improve system SE effectively.
2. System Model
2.1. System Configuration
2.2. Channel Model
3. Performance Analysis
3.1. Channel Estimation
3.2. Downlink Spectral Efficiency Analysis
4. Numerical Results
4.1. Simulation Parameter Setting
4.2. Simulation Result Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Proof of Theorem 1
Appendix B. Proof of ZF Closed-Form Expression
References
- Kuang, L.; Feng, Z.; Qian, Y.; Giambene, G. Interagrated terrestrial-satellite networks: Part two. China Commun. 2018, 15, IV–VI. [Google Scholar]
- Wang, P.; Zhang, J.; Zhang, X.; Yan, Z.; Evans, B.G.; Wang, W. Convergence of satellite and terrestrial networks: A comprehensive survey. IEEE Access 2020, 8, 5550–5588. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Zhu, H. On the spectral efficiency of cell-free large-scale MIMO non-orthogonal multiple access systems. Digit. Signal Process. 2021, 111, 1–11. [Google Scholar] [CrossRef]
- Jeong, S.; Farhang, A.; Flanagan, M. Collaborative vs non-collaborative CFO estimation for distributed large-scale MIMO systems. In Proceedings of the 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, BC, Canada, 4–7 October 2020; pp. 1–6. [Google Scholar]
- Feng, Y.; Wang, M.; Wang, D.; You, X. Low complexity iterative detection for a large-scale distributed MIMO prototyping system. In Proceedings of the 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Ngo, H.Q.; Larsson, E.G.; Marzetta, T.L. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun. 2013, 61, 1436–1449. [Google Scholar]
- Karakayali, M.K.; Foschini, G.J.; Valenzuela, R.A. Network coordination for spectrally efficient communications in cellular systems. IEEE Wirel. Commun. 2006, 13, 56–61. [Google Scholar] [CrossRef]
- Nguyen, L.D.; Duong, T.Q.; Ngo, H.Q.; Tourki, K. Energy efficiency in cell-free massive MIMO with zero-forcing precoding design. IEEE Commun. Lett. 2017, 21, 1871–1874. [Google Scholar] [CrossRef] [Green Version]
- Sinky, H.; Khalfi, B.; Hamdaoui, B.; Rayes, A. Responsive content-centric delivery in large urban communication networks: A linknyc use-case. IEEE Trans. Wirel. Commun. 2018, 17, 1688–1699. [Google Scholar] [CrossRef]
- Karipidis, E.; Sidiropoulos, N.D.; Luo, Z.Q. Quality of service and max-min fair transmit beamforming to multiple cochannel multicast groups. IEEE Trans. Signal Process. 2008, 56, 1268–1279. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, M.; Bjornson, E.; Larsson, E.G.; Yuen, C.; Marzetta, T. Joint unicast and multi-group multicast transmission in massive MIMO systems. IEEE Trans. Wirel. Commun. 2018, 17, 6375–6388. [Google Scholar] [CrossRef] [Green Version]
- Chen, E.; Tao, M.; Liu, Y.F. Joint base station clustering and beamforming for non-orthogonal multicast and unicast transmission with backhaul constraints. IEEE Trans. Wirel. Commun. 2017, 17, 6265–6279. [Google Scholar] [CrossRef]
- Doan, T.X.; Ngo, H.Q.; Duong, T.Q.; Tourki, K. On the performance of multigroup multicast cell-free massive MIMO. IEEE Commun. Lett. 2017, 21, 2642–2645. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, H.; Yang, L. Max-min power optimization in multigroup multicast cell-free massive MIMO. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019; pp. 1–6. [Google Scholar]
- Zhang, Y.; Zhu, X.; Jiang, C.; Yin, L. Joint user access and resource association in multicast terrestrial-satellite cooperation network. In Proceedings of the 2018 IEEE Globecom Workshops (GC WKSHPS), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 9–13. [Google Scholar]
- Zhu, X.; Jiang, C.; Yin, L.; Kuang, L.; Ge, N.; Lu, J. Cooperative multigroup multicast transmission in integrated terrestrial-satellite networks. IEEE J. Sel. Areas Commun. 2018, 36, 981–992. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, A.; Liang, X. The performance analysis of downlink NOMA in LEO satellite communication system. IEEE Access 2020, 8, 93723–93732. [Google Scholar] [CrossRef]
- Abdi, A.; Lau, W.; Alouini, M.; Kaveh, M. A new simple model for land mobile satellite channels: First- and second-order statistics. IEEE Trans. Wirel. Commun. 2003, 2, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Benkhelifa, F.; Tall, A.; Rezki, Z.; Alouini, M.-S. On the low SNR capacity of MIMO fading channels with imperfect channel state information. IEEE Trans. Commun. 2014, 2, 1921–1930. [Google Scholar] [CrossRef]
- Yang, H.; Marzetta, T.L.; Ashikhmin, A. Multicast performance of large-scale antenna systems. In Proceedings of the 2013 IEEE 14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Darmstadt, Germany, 16–19 June 2013; pp. 604–608. [Google Scholar]
- Li, J.; Wang, D.; Zhu, P.; Wang, J.; You, X. Downlink spectral efficiency of distributed massive MIMO systems with linear beamforming under pilot contamination. IEEE Trans. Veh. Technol. 2018, 67, 1130–1145. [Google Scholar] [CrossRef] [Green Version]
- Interdonato, G.; Karlsson, M.; Bjornson, E.; Larsson, E.G. Downlink spectral efficiency of cell-free massive MIMO with full-pilot zero-forcing. In Proceedings of the 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, CA, USA, 26–29 November 2018; pp. 1003–1007. [Google Scholar]
- Wang, D.; Wang, M.; Zhu, P.; Li, J.; Wang, J.; You, X. Performance of Network-Assisted Full-Duplex for Cell-Free Massive MIMO. IEEE Trans. Commun. 2020, 68, 1464–1478. [Google Scholar] [CrossRef] [Green Version]
Parameter Name | Value |
---|---|
Orbit altitude 1350 km | |
Carrier frequency | 20 GHz |
The number of AP | 6 |
The number of multicast group G | 3 |
The number of users per group | 5 |
Uplink pilot signal transmit power | 30 dBm |
Cell radius r | 1 km |
Path loss index a | 3.7 |
Satellite transmitting antenna gain | 24.3 dBi |
User receiving antenna gain | 10 dBi |
3 dB angle |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Chen, L.; Zhu, P.; Wang, D.; You, X. Satellite-Assisted Cell-Free Massive MIMO Systems with Multi-Group Multicast. Sensors 2021, 21, 6222. https://doi.org/10.3390/s21186222
Li J, Chen L, Zhu P, Wang D, You X. Satellite-Assisted Cell-Free Massive MIMO Systems with Multi-Group Multicast. Sensors. 2021; 21(18):6222. https://doi.org/10.3390/s21186222
Chicago/Turabian StyleLi, Jiamin, Lingling Chen, Pengcheng Zhu, Dongming Wang, and Xiaohu You. 2021. "Satellite-Assisted Cell-Free Massive MIMO Systems with Multi-Group Multicast" Sensors 21, no. 18: 6222. https://doi.org/10.3390/s21186222