GMSRI: A Texture-Based Martian Surface Rock Image Dataset
<p>The hierarchy of GMSRI. GMSRI is a four-level tree structure, the second level corresponds to five rock categories, the third level contacts subdivide some rock categories, and the fourth level nodes classify rocks from view angle and quantity of rocks.</p> "> Figure 2
<p>The marginal distributions of the number of images in the current GMSRI. (<b>a</b>) Number of images in each view angle. (<b>b</b>) Number of images in each quantity. (<b>c</b>) Number of images in each category.</p> "> Figure 3
<p>Examples of various spatial structures in our dataset. GMSRI includes a diverse set of 30,000 Martian rock images under different view angles and quantities.</p> "> Figure 4
<p>Overview of our proposed method. Mars32k is the database of raw Mastcam images. The processing steps are as follows: 1. Small-field rock images are selected from mars32k. 2. Small-field rock images are classed into five subsets. 3. Using a style-based generator, which is trained by selected images, to synthesis different types of Martian rock images. GMSRI is made up of the selected real images and the generated images.</p> "> Figure 5
<p>Composition of mars32k. Mars32k contains 32,368 images, including 19,867 images with small-field, 7950 images with wide-field and 4731 images with Curiosity‘s body. The small-field images include 1530 igneous rock images, 5954 sedimentary rock images, 2718 cracked rock images, 2947 gravel images, 1720 sands images and 4998 unclassified images.</p> "> Figure 6
<p>Snapshots of mars32k. We exhibit five representative small-field images, three wide-field images and one image with Curiosity‘s body.</p> "> Figure 7
<p>The structure of the GAN, which is being trained to generate Martian rock images. Latent <span class="html-italic">z</span> is mapped to <span class="html-italic">w</span> through an eight-layer fully connected network, and then <span class="html-italic">w</span> is used to control AdaIN operations after each convolution layer. After seven instances of upsampling, the size of the feature map grows from 4 × 4 to 512 × 512. The calculation process of each scale contains two convolution kernels and two AdaIN calculations, except for a 4 × 4 scale which includes one convolution kernel, two AdaIN calculations and one constant. A 512 × 512 × 32 feature map is converted to RGB using a separate 1 × 1 convolution. <math display="inline"><semantics> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <msub> <mi>s</mi> <mi>D</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <msub> <mi>s</mi> <mi>G</mi> </msub> </mrow> </semantics></math> are calculated from the output of the discriminator and are used to update the network weights of the discriminator and the generator, respectively.</p> "> Figure 8
<p>The comparison between the real images and the generated Mars images. Two real images and two generated Mars images were extracted from each subset for comparison and visualization, and further showing the effectiveness of the image generation method.</p> "> Figure 9
<p>Examples of Martian rock images synthesised by style mixing. The mixed results of five rock textures and four spatial structures are exhibited. It can be seen that after style mixing, the texture of various kinds of rock images in the “texture” list has not changed, but their shape and spatial structure become similar to rock images in the “shape” list.</p> "> Figure 10
<p>The FID-iterations curve of images generated by the trained model. The horizontal axis represents the number of iterations, and the vertical axis represents the FID between the distribution of generated images and the distribution of real images. It can be seen that when the number of iterations of model training reaches 12.24 million, FID reaches the minimum value of 7.04.</p> ">
Abstract
:1. Introduction
- (1)
- A new Martian surface rock image dataset, termed GMSRI, is built to solve the problem of lack of enough data when designing the algorithms for the visual tasks of the Martian rover. GMSRI makes it possible to design more robust and sophisticated models.
- (2)
- A style-based GAN structure is used to fit the distribution of Martian surface rock images and generate images for expanding the dataset, where the synchronously trained discriminator network makes the fitting process of the generator network smoother, and the latent space mapping network and the style transfer network enable us to generate more diverse images in a controllable way.
- (3)
- Experiments are conducted on the task of Mars image super-resolution to verify the effectiveness of the built GMSRI dataset, we achieve 26.42/0.72 and 25.74/0.628 in PSNR/SSIM with ×2 and ×4 scales, respectively, which is a baseline for comparison by other researchers in the future.
2. Properties of GMSRI
3. Building GMSRI
3.1. Overview
3.2. Selecting and Classing Images
3.3. Generating Images
3.4. Evaluation Metric of the Generated Images
4. GMSRI Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Castano, R.; Estlin, T.; Anderson, R.C.; Gaines, D.M.; Castano, A.; Bornstein, B.; Chouinard, C.; Judd, M. Oasis: Onboard autonomous science investigation system for opportunistic rover science. J. Field Robot. 2007, 24, 379–397. [Google Scholar] [CrossRef]
- Cousin, A.; Sautter, V.; Payré, V.; Forni, O.; Mangold, N.; Gasnault, O.; Le Deit, L.; Meslin, P.; Johnson, J.; Maurice, S.; et al. Classification of 59 Igneous Rocks Analyzed by ChemCam at Gale Crater, Mars. LPI Contrib. 2019, 2089, 6075. [Google Scholar]
- Cousin, A.; Sautter, V.; Payre, V.; Forni, O.; Mangold, N.; Gasnault, O.; Le Deit, L.; Johnson, J.; Maurice, S.; Salvatore, M.; et al. Classification of igneous rocks analyzed by ChemCam at Gale crater, Mars. Icarus 2017, 288, 265–283. [Google Scholar] [CrossRef]
- Mangold, N.; Schmidt, M.E.; Fisk, M.R.; Forni, O.; McLennan, S.M.; Ming, D.W.; Sautter, V.; Sumner, D.; Williams, A.J.; Clegg, S.M.; et al. Classification scheme for sedimentary and igneous rocks in Gale crater, Mars. Icarus 2017, 284, 1–17. [Google Scholar] [CrossRef]
- Grotzinger, J.P.; Crisp, J.; Vasavada, A.R.; Anderson, R.C.; Baker, C.J.; Barry, R.; Blake, D.F.; Conrad, P.; Edgett, K.S.; Ferdowski, B.; et al. Mars Science Laboratory mission and science investigation. Space Sci. Rev. 2012, 170, 5–56. [Google Scholar] [CrossRef] [Green Version]
- Estlin, T.; Castano, R.; Bornstein, B.; Gaines, D.; Anderson, R.C.; De Granville, C.; Thompson, D.; Burl, M.; Judd, M.; Chien, S. Automated targeting for the MER rovers. In Proceedings of the 2009 Third IEEE International Conference on Space Mission Challenges for Information Technology, Pasadena, CA, USA, 19–23 July 2009; pp. 257–263. [Google Scholar]
- Bell, J.F., III; Godber, A.; McNair, S.; Caplinger, M.; Maki, J.; Lemmon, M.; Van Beek, J.; Malin, M.; Wellington, D.; Kinch, K.; et al. The Mars Science Laboratory Curiosity rover Mastcam instruments: Preflight and in-flight calibration, validation, and data archiving. Earth Space Sci. 2017, 4, 396–452. [Google Scholar]
- Ayhan, B.; Dao, M.; Kwan, C.; Chen, H.M.; Bell, J.F.; Kidd, R. A novel utilization of image registration techniques to process mastcam images in Mars rover with applications to image fusion, pixel clustering, and anomaly detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4553–4564. [Google Scholar] [CrossRef]
- Golombek, M.; Grant, J.; Kipp, D.; Vasavada, A.; Kirk, R.; Fergason, R.; Bellutta, P.; Calef, F.; Larsen, K.; Katayama, Y.; et al. Selection of the Mars Science Laboratory landing site. Space Sci. Rev. 2012, 170, 641–737. [Google Scholar] [CrossRef]
- Stack, K.M.; Edwards, C.; Grotzinger, J.; Gupta, S.; Sumner, D.; Calef, F., III; Edgar, L.; Edgett, K.; Fraeman, A.; Jacob, S.; et al. Comparing orbiter and rover image-based mapping of an ancient sedimentary environment, Aeolis Palus, Gale crater, Mars. Icarus 2016, 280, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, L.; Wu, Z.; Ling, Z.; Cao, X.; Guo, K.; Yan, F. Autonomous Martian rock image classification based on transfer deep learning methods. Earth Sci. Inform. 2020, 13, 951–963. [Google Scholar] [CrossRef]
- Higa, S.; Iwashita, Y.; Otsu, K.; Ono, M.; Lamarre, O.; Didier, A.; Hoffmann, M. Vision-based estimation of driving energy for planetary rovers using deep learning and terramechanics. IEEE Robot. Autom. Lett. 2019, 4, 3876–3883. [Google Scholar] [CrossRef]
- Gichu, R.; Ogohara, K. Segmentation of dust storm areas on Mars images using principal component analysis and neural network. Prog. Earth Planet. Sci. 2019, 6, 1–12. [Google Scholar] [CrossRef]
- Ran, X.; Xue, L.; Zhang, Y.; Liu, Z.; Sang, X.; He, J. Rock classification from field image patches analyzed using a deep convolutional neural network. Mathematics 2019, 7, 755. [Google Scholar] [CrossRef] [Green Version]
- Taylor, L.; Nitschke, G. Improving deep learning using generic data augmentation. arXiv 2017, arXiv:1708.06020. [Google Scholar]
- Ding, J.; Chen, B.; Liu, H.; Huang, M. Convolutional neural network with data augmentation for SAR target recognition. IEEE Geosci. Remote Sens. Lett. 2016, 13, 364–368. [Google Scholar] [CrossRef]
- Wagstaff, K.; Lu, S.; Dunkel, E.; Grimes, K.; Zhao, B.; Cai, J.; Cole, S.B.; Doran, G.; Francis, R.; Lee, J.; et al. Mars Image Content Classification: Three Years of NASA Deployment and Recent Advances. arXiv 2021, arXiv:2102.05011. [Google Scholar]
- Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4401–4410. [Google Scholar]
- Grotzinger, J.P.; Milliken, R.E. The sedimentary rock record of Mars: Distribution, origins, and global stratigraphy. Sediment. Geol. Mars 2012, 102, 1–48. [Google Scholar]
- Van Dyk, D.A.; Meng, X.L. The art of data augmentation. J. Comput. Graph. Stat. 2001, 10, 1–50. [Google Scholar] [CrossRef]
- Perez, L.; Wang, J. The effectiveness of data augmentation in image classification using deep learning. arXiv 2017, arXiv:1712.04621. [Google Scholar]
- Li, G.; Huang, Y.; Chen, Z.; Chesser, G.D.; Purswell, J.L.; Linhoss, J.; Zhao, Y. Practices and Applications of Convolutional Neural Network-Based Computer Vision Systems in Animal Farming: A Review. Sensors 2021, 21, 1492. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. arXiv 2014, arXiv:1406.2661. [Google Scholar] [CrossRef]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Arjovsky, M.; Bottou, L. Towards principled methods for training generative adversarial networks. arXiv 2017, arXiv:1701.04862. [Google Scholar]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein GAN. arXiv 2017, arXiv:1701.07875. [Google Scholar]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved training of Wasserstein gans. arXiv 2017, arXiv:1704.00028. [Google Scholar]
- Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of gans for improved quality, stability, and variation. arXiv 2017, arXiv:1710.10196. [Google Scholar]
- Miyato, T.; Kataoka, T.; Koyama, M.; Yoshida, Y. Spectral normalization for generative adversarial networks. arXiv 2018, arXiv:1802.05957. [Google Scholar]
- Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-attention generative adversarial networks. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 7354–7363. [Google Scholar]
- Brock, A.; Donahue, J.; Simonyan, K. Large scale GAN training for high fidelity natural image synthesis. arXiv 2018, arXiv:1809.11096. [Google Scholar]
- Chaitanya, K.; Karani, N.; Baumgartner, C.F.; Becker, A.; Donati, O.; Konukoglu, E. Semi-supervised and task-driven data augmentation. In International Conference on Information Processing in Medical Imaging; Springer: Berlin/Heidelberg, Germany, 2019; pp. 29–41. [Google Scholar]
- Kalajdjieski, J.; Zdravevski, E.; Corizzo, R.; Lameski, P.; Kalajdziski, S.; Pires, I.M.; Garcia, N.M.; Trajkovik, V. Air pollution prediction with multi-modal data and deep neural networks. Remote Sens. 2020, 12, 4142. [Google Scholar] [CrossRef]
- Huang, X.; Belongie, S. Arbitrary style transfer in real-time with adaptive instance normalization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October, 2017; pp. 1501–1510. [Google Scholar]
- Fréchet, M. Sur la distance de deux lois de probabilité. Comptes Rendus Hebd. Des Seances De L Acad. Des Sci. 1957, 244, 689–692. [Google Scholar]
- Vaserstein, L.N. Markov processes over denumerable products of spaces, describing large systems of automata. Probl. Peredachi Informatsii 1969, 5, 64–72. [Google Scholar]
- Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans trained by a two time-scale update rule converge to a local nash equilibrium. arXiv 2017, arXiv:1706.08500. [Google Scholar]
- Dowson, D.; Landau, B. The Fréchet distance between multivariate normal distributions. J. Multivar. Anal. 1982, 12, 450–455. [Google Scholar] [CrossRef] [Green Version]
- Bell-Kligler, S.; Shocher, A.; Irani, M. Blind super-resolution kernel estimation using an internal-gan. arXiv 2019, arXiv:1909.06581. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 16–21 July 2017; pp. 136–144. [Google Scholar]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Change Loy, C. Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Shocher, A.; Cohen, N.; Irani, M. “zero-shot” super-resolution using deep internal learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3118–3126. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Zhang, Z.; Zhang, Y.; Tian, R.; Ding, M. GMSRI: A Texture-Based Martian Surface Rock Image Dataset. Sensors 2021, 21, 5410. https://doi.org/10.3390/s21165410
Wang C, Zhang Z, Zhang Y, Tian R, Ding M. GMSRI: A Texture-Based Martian Surface Rock Image Dataset. Sensors. 2021; 21(16):5410. https://doi.org/10.3390/s21165410
Chicago/Turabian StyleWang, Cong, Zian Zhang, Yongqiang Zhang, Rui Tian, and Mingli Ding. 2021. "GMSRI: A Texture-Based Martian Surface Rock Image Dataset" Sensors 21, no. 16: 5410. https://doi.org/10.3390/s21165410