Enhancing Detection of SSMVEP Induced by Action Observation Stimuli Based on Task-Related Component Analysis
<p>The diagram of the mc-TRCA and CB-mc-TRCA.</p> "> Figure 2
<p>Analysis of the eigenvalues and task-related components in the EEG data when S6 gazed at the left gaiting stimulus. (<b>A</b>) The spectrum of the averaged EEG data. (<b>B</b>) The spectrums of task-related components. (<b>C</b>) The eigenvalue distribution using randomized task onsets. The asterisks (*) are the eigenvalues at the upper left of sub figure in (<b>B</b>).</p> "> Figure 3
<p>The spectrums of task–related components when S6 gazing at the different gaiting stimulus. (<b>A</b>) Gazing at the right gaiting stimulus. (<b>B</b>) Gazing at the up gaiting stimulus. (<b>C</b>) Gazing at the bottom gaiting stimulus.</p> "> Figure 4
<p>The comparison of accuracy among the four different algorithms with different data lengths.</p> "> Figure 5
<p>The classification confusion matrices average from all the subjects. (<b>A</b>) CCA-based method; (<b>B</b>) e-TRCA method; (<b>C</b>) mc-TRCA method; (<b>D</b>) CB-mc-TRCA method.</p> "> Figure 6
<p>Feature visualization using t-SNE. (<b>A</b>) The correlation coefficient after utilizing CCA-based spatial filter; (<b>B</b>) the correlation coefficient after utilizing e-TRCA-based spatial filter; (<b>C</b>) the correlation coefficient after utilizing mc-TRCA-based spatial filter; (<b>D</b>) the correlation coefficient after utilizing CB-mc-TRCA-based spatial filter.</p> "> Figure 7
<p>Analysis of the eigenvalues and task-related components in the EEG data when S6 gazed at the flicker stimulus. (<b>A</b>) The spectrum of the averaged EEG data; (<b>B</b>) the spectrums of task-related components; (<b>C</b>) the eigenvalue distribution using randomized task onsets.</p> "> Figure 8
<p>Analysis of the eigenvalues and task-related components in the EEG data when S6 gazing at the checkerboard stimulus. (<b>A</b>) the spectrum of the averaged EEG data; (<b>B</b>) the spectrums of task-related components; (<b>C</b>) the eigenvalue distribution using randomized task onsets.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Description
2.1.1. Stimulus
2.1.2. Experiment and EEG data acquisition
2.1.3. Data Preprocessing
2.2. Multi-Components Task-Related Component Analysis
2.2.1. Computation of Eigenvalues
2.2.2. Chosen of Significant Components
2.2.3. Feature Extraction
2.3. Ensemble Task-Related Component Analysis (e-TRCA)
2.4. CCA-Based Method
2.5. Cross-Validation
2.6. Statistical Analysis
3. Results
3.1. Analysis of Eigenvalues and the Significant Task-Related Components
3.2. Target Identification Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Collinger, J.L.; Perez, M.A.; Tyler-Kabara, E.C.; Cohen, L.G.; Birbaumer, N.; Brose, S.W.; Schwartz, A.B.; Boninger, M.L.; Weber, D.J. Neural Interface Technology for Rehabilitation: Exploiting and Promoting Neuroplasticity. Phys. Med. Rehabil. Clin. N. Am. 2010, 21, 157–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzolatti, G.; Cattaneo, L.; Fabbri-Destro, M.; Rozzi, S. Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding. Physiol. Rev. 2014, 94, 655–706. [Google Scholar] [CrossRef] [PubMed]
- Tani, M.; Ono, Y.; Matsubara, M.; Ohmatsu, S.; Yukawa, Y.; Kohno, M.; Tominaga, T. Action observation facilitates motor cortical activity in patients with stroke and hemiplegia. Neurosci. Res. 2018, 133, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Nagai, H.; Tanaka, T. Action Observation of Own Hand Movement Enhances Event-Related Desynchronization. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1407–1415. [Google Scholar] [CrossRef]
- Wolpaw, J.R.; Birbaumer, N.; Heetderks, W.J.; McFarland, D.J.; Peckham, P.H.; Schalk, G.; Donchin, E.; Quatrano, L.A.; Robinson, C.J.; Vaughan, T.M. Brain-computer interface technology: A review of the first international meeting. IEEE Trans. Rehabil. Eng. 2000, 8, 164–173. [Google Scholar] [CrossRef]
- Ang, K.K.; Guan, C. Brain-computer interface in stroke rehabilitation. J. Comput. Sci. Eng. 2013, 7, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Liepert, J.; Büsching, I.; Sehle, A.; Schoenfeld, M.A. Mental chronometry and mental rotation abilities in stroke patients with different degrees of sensory deficit. Restor. Neurol. Neurosci. 2016, 34, 907–914. [Google Scholar] [CrossRef]
- Lim, H.; Ku, J. A Brain-Computer Interface-Based Action Observation Game That Enhances Mu Suppression. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 2290–2296. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, G.; Ravi, A.; Pearce, S.; Jiang, N. Can a highly accurate multi-class SSMVEP BCI induce sensory-motor rhythm in the sensorimotor area? J. Neural Eng. 2021, 18, 35001. [Google Scholar] [CrossRef]
- Xie, J.; Xu, G.; Wang, J.; Zhang, F.; Zhang, Y. Steady-State Motion Visual Evoked Potentials Produced by Oscillating Newton’s Rings: Implications for Brain-Computer Interfaces. PLoS ONE 2012, 7, e39707. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Xu, G.; Xie, J.; Li, M.; Dan, Z. Four novel motion paradigms based on steady-state motion visual evoked potential. IEEE Trans. Biomed. Eng. 2018, 65, 1696–1704. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, G.; Xie, J.; Zhang, X. Brain response to luminance-based and motion-based stimulation using inter-modulation frequencies. PLoS ONE 2017, 12, e0188073. [Google Scholar] [CrossRef] [Green Version]
- Mannan, M.M.N.; Kamran, M.A.; Kang, S.; Choi, H.S.; Jeong, M.Y. A Hybrid Speller Design Using Eye Tracking and SSVEP Brain–Computer Interface. Sensors 2020, 20, 891. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.; Gao, X.; Gao, S.; Xu, D. Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans. Biomed. Eng. 2002, 49, 1181–1186. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, C.; Wu, W.; Gao, X. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans. Biomed. Eng. 2006, 53, 2610–2614. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, G.; Zhao, Q.; Onishi, A.; Jin, J.; Wang, X.; Cichocki, A. Multiway canonical correlation analysis for frequency components recognition in SSVEP-based BCIs. In International Conference on Neural Information Processing, Shanghai, China, 13–17 November 2011; Lecture Notes in Computer Science Book Series; including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics; Springer: Berlin/Heidelberg, Germany, 2011; Volume 7062 LNCS, pp. 287–295. [Google Scholar]
- Nakanishi, M.; Wang, Y.; Wang, Y.T.; Mitsukura, Y.; Jung, T.P. A high-speed brain speller using steady-state visual evoked potentials. Int. J. Neural Syst. 2014, 24, 1450019. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, G.; Jin, J.; Wang, M.; Wang, X.; Cichocki, A. L1-regularized multiway canonical correlation analysis for SSVEP-based BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 887–896. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Gao, S.; Jung, T.P.; Gao, X. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface. J. Neural Eng. 2015, 12, 046008. [Google Scholar] [CrossRef]
- Nakanishi, M.; Wang, Y.; Chen, X.; Wang, Y.T.; Gao, X.; Jung, T.P. Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Trans. Biomed. Eng. 2018, 65, 104–112. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, G.; Zhang, X.; Wu, Q. A Light Spot Humanoid Motion Paradigm Modulated by the Change of Brightness to Recognize the Stride Motion Frequency. Front. Hum. Neurosci. 2018, 12, 337. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Nakanishi, M.; Gao, X.; Jung, T.-P.; Gao, S. High-speed spelling with a noninvasive brain–computer interface. Proc. Natl. Acad. Sci. USA 2015, 112, E6058–E6067. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Katura, T.; Sato, H. Task-related component analysis for functional neuroimaging and application to near-infrared spectroscopy data. Neuroimage 2013, 64, 308–327. [Google Scholar] [CrossRef]
- Lage-Castellanos, A.; Martínez-Montes, E.; Hernández-Cabrera, J.A.; Galán, L. False discovery rate and permutation test: An evaluation in ERP data analysis. Stat. Med. 2010, 29, 63–74. [Google Scholar] [CrossRef]
- Ales, J.M.; Norcia, A.M. Assessing direction-specific adaptation using the steady-state visual evoked potential: Results from EEG source imaging. J. Vis. 2009, 9, 8. [Google Scholar] [CrossRef]
- Van Der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2625. [Google Scholar]
- Srihari Mukesh, T.M.; Jaganathan, V.; Reddy, M.R. A novel multiple frequency stimulation method for steady state VEP based brain computer interfaces. Physiol. Meas. 2006, 27, 61–71. [Google Scholar] [CrossRef]
- Shyu, K.K.; Lee, P.L.; Liu, Y.J.; Sie, J.J. Dual-frequency steady-state visual evoked potential for brain computer interface. Neurosci. Lett. 2010, 483, 28–31. [Google Scholar] [CrossRef]
- Chang, M.H.; Baek, H.J.; Lee, S.M.; Park, K.S. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces. Clin. Neurophysiol. 2014, 125, 1380–1391. [Google Scholar] [CrossRef]
Targets | Features | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 |
---|---|---|---|---|---|---|---|---|---|---|---|
Left target | 1,2 | 1 | 1 | 2,1 | 1,2 | 1,2,3 | 1,2,3 | 1,2 | 1,3 | 3,1 | |
1,2 | 1 | 1 | - | 1 | 2 | 2 | - | 1 | - | ||
- | 1 | 1 | 2 | - | 3 | 2,3 | 2 | 2 | 2 | ||
2 | 1 | 2,3 | 1 | - | 1 | 1,2,3 | 1,2 | 3 | 3 | ||
Right target | 1,2 | 1 | 2,1 | 1 | 1 | 2 | 1,2 | 1 | 2,1 | 1 | |
1,2 | 1 | 1,2 | 2,1 | 1 | 1 | 2 | 1 | - | 1,2 | ||
1 | 1 | 2 | 1 | 1,2 | 2 | 2 | 1 | - | - | ||
1 | 1 | 2,1 | 1 | 1,2 | 2,1 | 1 | 1 | - | 1 | ||
Up target | 1,2 | 1 | 2,1 | 1 | 2,1 | 2,1 | 1 | 1 | 2,1 | 2 | |
2 | - | 1 | 2 | 1 | 2 | 2,1 | 1 | 1 | 1 | ||
1,2 | 1 | - | 1 | 1 | 2,1 | 2 | 1 | 1 | 2 | ||
1,2 | 1 | 2,1 | 1 | 2 | 2,1 | 2,1,3 | - | 1 | 1 | ||
Bottom target | 2,1 | 1 | 1,2 | - | 2,3 | 1,2 | 1,2,3 | 2,1 | 1,2 | 1 | |
1,2 | 2,1 | 2,1 | 3 | 1 | 2 | 1,2 | 1,2 | 2 | - | ||
1 | 1 | 1 | 1 | - | 2 | - | - | 1 | - | ||
2,1 | 1,2 | 2,1 | 2 | 2 | 1,2 | 1,3,2 | 1 | 2,1 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Hou, W.; Wu, X.; Chen, L.; Jiang, N. Enhancing Detection of SSMVEP Induced by Action Observation Stimuli Based on Task-Related Component Analysis. Sensors 2021, 21, 5269. https://doi.org/10.3390/s21165269
Zhang X, Hou W, Wu X, Chen L, Jiang N. Enhancing Detection of SSMVEP Induced by Action Observation Stimuli Based on Task-Related Component Analysis. Sensors. 2021; 21(16):5269. https://doi.org/10.3390/s21165269
Chicago/Turabian StyleZhang, Xin, Wensheng Hou, Xiaoying Wu, Lin Chen, and Ning Jiang. 2021. "Enhancing Detection of SSMVEP Induced by Action Observation Stimuli Based on Task-Related Component Analysis" Sensors 21, no. 16: 5269. https://doi.org/10.3390/s21165269