Diagnostic of Operation Conditions and Sensor Faults Using Machine Learning in Sucker-Rod Pumping Wells
<p>Basic components of a sucker-rod pumping well.</p> "> Figure 2
<p>Examples of patterns for operating conditions on the surface and downhole dynamometer cards: (<b>a</b>) normal operation; (<b>b</b>) fluid pound; (<b>c</b>) leaking traveling valve; and (<b>d</b>) leaking standing valve.</p> "> Figure 3
<p>Examples of sensor faults in surface and downhole dynamometer cards; (<b>a</b>) line card; (<b>b</b>) noise card; (<b>c</b>,<b>d</b>) rotated card.</p> "> Figure 4
<p>Basic flow of operation of a project with machine learning.</p> "> Figure 5
<p>Confusion matrix for binary classification problems.</p> "> Figure 6
<p>Application of the Fourier transform in a normalized downhole dynamometer card using Equations (<a href="#FD14-sensors-21-04546" class="html-disp-formula">14</a>)–(<a href="#FD16-sensors-21-04546" class="html-disp-formula">16</a>).</p> "> Figure 7
<p>Application of the CWT, with only one scale, in a normalized downhole dynamometer card. Equations (<a href="#FD14-sensors-21-04546" class="html-disp-formula">14</a>) and (<a href="#FD17-sensors-21-04546" class="html-disp-formula">17</a>) and the magnitude of the wavelet coefficients were used.</p> "> Figure 8
<p>Application of DWT on a normalized downhole dynamometer card. Equations (<a href="#FD14-sensors-21-04546" class="html-disp-formula">14</a>) and (<a href="#FD17-sensors-21-04546" class="html-disp-formula">17</a>) and discrete values for <span class="html-italic">s</span> and <span class="html-italic">b</span> were used.</p> "> Figure 9
<p>Common steps for experimenting with a machine learning project. These steps were used in the development of this work.</p> "> Figure 10
<p>Scheme of classification and manual selection of downhole cards used in this work.</p> "> Figure 11
<p>Implementation of experiments.</p> "> Figure 12
<p>Metrics of group A.</p> "> Figure 13
<p>Metrics of group B.</p> "> Figure 14
<p>Metrics of group C.</p> "> Figure 15
<p>Metrics of group D.</p> "> Figure 16
<p>Confusion matrix for training dataset with 30 instances per class (Fourier descriptor, random forest and no hyperparameter tuning).</p> "> Figure 17
<p>Confusion matrix to training dataset with 180 instances per class (Fourier descriptor, decision tree and no hyperparameter tuning).</p> "> Figure 18
<p>Metrics of group E.</p> "> Figure 19
<p>Metrics of group F.</p> "> Figure 20
<p>Metrics of group G.</p> "> Figure 21
<p>Accuracy, <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mn>1</mn> </msub> <mi>m</mi> <mi>a</mi> <mi>c</mi> <mi>r</mi> <mi>o</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>M</mi> <mi>C</mi> <mi>C</mi> </mrow> </semantics></math> of the groups E, F and G.</p> "> Figure 22
<p>Accuracy histogram of the groups E, F and G.</p> "> Figure 23
<p>Best confusion matrix of this work (Fourier descriptor, balanced and AML)—(MultinomialNB, PCA and KNeighborsClassifier)—group G.</p> "> Figure 24
<p>Accuracy histogram.</p> "> Figure 25
<p><math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mn>1</mn> </msub> <mi>m</mi> <mi>a</mi> <mi>c</mi> <mi>r</mi> <mi>o</mi> </mrow> </semantics></math> for balanced and unbalanced datasets.</p> "> Figure 26
<p><span class="html-italic">MCC</span> for balanced and unbalanced datasets.</p> ">
Abstract
:1. Introduction
1.1. Sensor Faults in Sucker-Rod Pumping Wells
1.2. Diagnostic of Operation Conditions of Sucker-Rod Pumping Systems
2. Materials and Methods
2.1. Machine Learning Essentials
2.2. Imbalanced Datasets
2.3. Metrics for Imbalanced Datasets
2.4. Hyperparameter Tune
2.5. Machine Learning Algorithms
2.6. Feature Extraction to Dynamometer Card
2.7. Methodology
2.8. Implementation of Experiments
3. Results
3.1. Experimentation Procedures
3.2. Results from Models Trained by Small Datasets
3.3. Results from Models Trained by Large Datasets
3.4. The Best Model for Diagnostic of Operation Conditions and Sensor Fault
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, A.; Gao, X. Fault diagnosis of sucker rod pumping systems based on Curvelet Transform and sparse multi-graph regularized extreme learning machine. Int. J. Comput. Intell. Syst. 2018, 11, 428–437. [Google Scholar] [CrossRef] [Green Version]
- Takacs, G. Sucker-Rod Pumping Manual; PennWell Books: Tulsa, OK, USA, 2003. [Google Scholar]
- Takacs, G. Sucker-Rod Pumping Handbook: Production Engineering Fundamentals and Long-Stroke Rod Pumping; Elsevier Science: New York, NY, USA, 2015. [Google Scholar]
- de Lima, F.S.; Guedes, L.A.; Silva, D.R. Comparison of Border Descriptors and Pattern Recognition Techniques Applied to Detection and Diagnose of Faults on Sucker-Rod Pumping System. In Digital Image Processing; Stanciu, S.G., Ed.; IntechOpen: Rijeka, Croatia, 2012; Chapter 5. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, S.; Neely, A. Computer diagnosis of down-hole conditions in sucker rod pumping wells. J. Pet. Technol. 1966, 18, 91–98. [Google Scholar] [CrossRef]
- Dickinson, R.R.; Jennings, J.W. Use of pattern-recognition techniques in analyzing downhole dynamometer cards. SPE Soc. Pet. Eng. Prod. Eng. 1990. [Google Scholar] [CrossRef]
- Tripp, H. A review: Analyzing beam-pumped wells. J. Pet. Technol. 1989, 41, 457–458. [Google Scholar] [CrossRef]
- Nazi, G.; Ashenayi, K.; Lea, J.; Kemp, F. Application of artificial neural network to pump card diagnosis. SPE Comput. Appl. 1994, 6, 9–14. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y.; Wang, J.; Wang, C.; Duan, Y. Recent advances in sensor fault diagnosis: A review. Sens. Actuators Phys. 2020, 309, 111990. [Google Scholar] [CrossRef]
- Kunttu, I.; Lepistö, L.; Visa, A.J. Efficient Fourier shape descriptor for industrial defect images using wavelets. Opt. Eng. 2005, 44, 080503. [Google Scholar] [CrossRef] [Green Version]
- Chandra, R. Pattern Recognition Initiative in Machine Learning for Upstream Sector. LTI. Available online: https://www.lntinfotech.com/blogs/pattern-recognition-initiative-in-machine-learning-for-upstream-sector (accessed on 27 January 2021).
- Wang, X.; He, Y.; Li, F.; Dou, X.; Wang, Z.; Xu, H.; Fu, L. A working condition diagnosis model of sucker rod pumping wells based on big data deep learning. In Proceedings of the International Petroleum Technology Conference, Beijing, China, 26–28 March 2019; pp. 1–10. [Google Scholar]
- Schnitman, L.; Albuquerque, G.; Corrêa, J.; Lepikson, H.; Bitencourt, A. Modeling and implementation of a system for sucker rod downhole dynamometer card pattern recognition. In Proceedings of the SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Denver, CO, USA, 5–8 October 2003; pp. 1–4. [Google Scholar]
- De Souza, A.; Bezerra, M.; Barreto Filho, M.d.A.; Schnitman, L. Using artificial neural networks for pattern recognition of downhole dynamometer card in oil rod pump system. In Proceedings of the 8th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, Milan, Italy, 6–10 May 2009; pp. 230–235. [Google Scholar]
- Liu, S.; Raghavendra, C.S.; Liu, Y.; Yao, K.T.; Balogun, O.; Olabinjo, L.; Soma, R.; Ivanhoe, J.; Smith, B.; Seren, B.B.; et al. Automatic early fault detection for rod pump systems. In Proceedings of the SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Denver, CO, USA, 30 October–2 November 2011; pp. 1–11. [Google Scholar]
- Li, K.; Gao, X.W.; Yang, W.B.; Dai, Y.; Tian, Z.D. Multiple fault diagnosis of down-hole conditions of sucker-rod pumping wells based on Freeman chain code and DCA. Pet. Sci. 2013, 10, 347–360. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Gao, X.; Tian, Z.; Qiu, Z. Using the curve moment and the PSO-SVM method to diagnose downhole conditions of a sucker rod pumping unit. Pet. Sci. 2013, 10, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Huang, S.; Luo, Y. Research on Automatic Diagnosis Based on ANN Well Conditions Fault. In Proceedings of the 2013 International Conference on Information Science and Computer Applications (ISCA 2013), Changsha, China, 8–9 November 2013; pp. 33–39. [Google Scholar]
- Yu, Y.; Shi, H.; Mi, L. Research on feature extraction of indicator card data for sucker-rod pump working condition diagnosis. J. Control Sci. Eng. 2013. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Sun, S.; Liu, J. Working Condition Detection of Suck Rod Pumping System via Extreme Learning Machine. In Proceedings of the 2nd International Conference on Civil, Materials and Environmental Sciences (CMES 2015), Paris, France, 13–14 March 2015; pp. 434–437. [Google Scholar]
- Li, K.; Gao, X.W.; Zhou, H.B.; Han, Y. Fault diagnosis for down-hole conditions of sucker rod pumping systems based on the FBH–SC method. Pet. Sci. 2015, 12, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Wang, J.; Gao, P. A deep learning approach for condition-based monitoring and fault diagnosis of rod pump. Serv. Trans. Internet Things (STIOT) 2017, 1, 32–42. [Google Scholar] [CrossRef]
- Zheng, B.; Gao, X. Diagnosis of sucker rod pumping based on dynamometer card decomposition and hidden Markov model. Trans. Inst. Meas. Control 2018, 40, 4309–4320. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, Y.; Liu, W.; Liu, B. Hessian-regularized weighted multi-view canonical correlation analysis for working condition recognition of sucker-rod pumping wells. Syst. Sci. Control Eng. 2018, 6, 215–226. [Google Scholar] [CrossRef]
- Ren, T.; Kang, X.; Sun, W.; Song, H. Study of dynamometer cards identification based on root-mean-square error algorithm. Int. J. Pattern Recognit. Artif. Intell. 2018, 32, 1850004. [Google Scholar] [CrossRef]
- Bangert, P.; Sharaf, S. Predictive maintenance for rod pumps. In Proceedings of the SPE Western Regional Meeting, San Jose, CA, USA, 23–26 April 2019; pp. 1–12. [Google Scholar]
- Peng, Y. Artificial Intelligence Applied in Sucker Rod Pumping Wells: Intelligent Dynamometer Card Generation, Diagnosis, and Failure Detection Using Deep Neural Networks. In Proceedings of the SPE Annual Technical Conference and Exhibition, Calgary, AB, Canada, 30 September–2 October 2019; pp. 1–12. [Google Scholar]
- Carpenter, C. Analytics Solution Helps Identify Rod-Pump Failure at the Wellhead. J. Pet. Technol. 2019, 71, 63–64. [Google Scholar] [CrossRef]
- Sharaf, S.A.; Bangert, P.; Fardan, M.; Alqassab, K.; Abubakr, M.; Ahmed, M. Beam Pump Dynamometer Card Classification Using Machine Learning. In Proceedings of the SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, 18–21 March 2019; pp. 1–12. [Google Scholar]
- Abdalla, R.; Abu El Ela, M.; El-Banbi, A. Identification of Downhole Conditions in Sucker Rod Pumped Wells Using Deep Neural Networks and Genetic Algorithms. SPE Prod. Oper. 2020, 35, 435–447. [Google Scholar] [CrossRef]
- Carpenter, C. Dynamometer-Card Classification Uses Machine Learning. J. Pet. Technol. 2020, 72, 52–53. [Google Scholar] [CrossRef]
- Cheng, H.; Yu, H.; Zeng, P.; Osipov, E.; Li, S.; Vyatkin, V. Automatic Recognition of Sucker-Rod Pumping System Working Conditions Using Dynamometer Cards with Transfer Learning and SVM. Sensors 2020, 20, 5659. [Google Scholar] [CrossRef]
- Ashraf, M. Reinventing the Oil and Gas Industry: Compounded Disruption. World Economic Forum. Available online: https://www.weforum.org/agenda/2020/09/reinventing-the-oil-and-gas-industry-compounded-disruption (accessed on 27 January 2021).
- Booth, A.; Patel, N.; Smith, M. Digital Transformation in Energy: Achieving Escape Velocity. McKinsey and Company. Available online: https://www.mckinsey.com/industries/oil-and-gas/our-insights/digital-transformation-in-energy-achieving-escape-velocity (accessed on 27 January 2021).
- Raghothamarao, V. Machine Learning and AI Industry Shaping the Oil and Gas Industry. Pipeline Oil and Gas News. Available online: https://www.pipelineoilandgasnews.com/interviewsfeatures/features/2019/july/machine-learning-and-ai-industry-shaping-the-oil-and-gas-industry (accessed on 15 February 2021).
- Grus, J. Data Science from Scratch: First Principles with Python; O’Reilly Media: Sebastopol, CA, USA, 2015. [Google Scholar]
- Santos, P.; Maudes, J.; Bustillo, A. Identifying maximum imbalance in datasets for fault diagnosis of gearboxes. J. Intell. Manuf. 2015, 29. [Google Scholar] [CrossRef]
- Krawczyk, B. Learning from imbalanced data: Open challenges and future directions. Prog. Artif. Intell. 2016, 5, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Shelke, M.S.; Deshmukh, P.R.; Shandilya, V.K. A review on imbalanced data handling using undersampling and oversampling technique. Int. J. Recent Trends Eng. Res. 2017, 3, 444–449. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pazzani, M.; Merz, C.; Murphy, P.; Ali, K.; Hume, T.; Brunk, C. Reducing misclassification costs. In Proceedings of the Machine Learning Proceedings 1994, New Brunswick, NJ, USA, 10–13 July 1994; pp. 217–225. [Google Scholar]
- Chinchor, N.; Sundheim, B.M. MUC-5 evaluation metrics. In Proceedings of the Fifth Message Understanding Conference (MUC-5), Baltimore, MD, USA, 25–27 August 1993. [Google Scholar]
- Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Pillai, I.; Fumera, G.; Roli, F. Designing multi-label classifiers that maximize F measures: State of the art. Pattern Recognit. 2017, 61, 394–404. [Google Scholar] [CrossRef] [Green Version]
- Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta (BBA) Protein Struct. 1975, 405, 442–451. [Google Scholar] [CrossRef]
- Baldi, P.; Brunak, S.; Chauvin, Y.; Andersen, C.A.; Nielsen, H. Assessing the accuracy of prediction algorithms for classification: An overview. Bioinformatics 2000, 16, 412–424. [Google Scholar] [CrossRef] [Green Version]
- Jurman, G.; Furlanello, C. A unifying view for performance measures in multi-class prediction. arXiv 2010, arXiv:1008.2908. [Google Scholar]
- Gorodkin, J. Comparing two K-category assignments by a K-category correlation coefficient. Comput. Biol. Chem. 2004, 28, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, R.G.; Rossi, A.L.; Vanschoren, J.; Bischl, B.; Carvalho, A.C. To tune or not to tune: Recommending when to adjust SVM hyper-parameters via meta-learning. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 11–16 July 2015; pp. 1–8. [Google Scholar]
- Lujan-Moreno, G.A.; Howard, P.R.; Rojas, O.G.; Montgomery, D.C. Design of experiments and response surface methodology to tune machine learning hyperparameters, with a random forest case-study. Expert Syst. Appl. 2018, 109, 195–205. [Google Scholar] [CrossRef]
- Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated Machine Learning: Methods, Systems, Challenges; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. In Proceedings of the 25th Annual Conference on Neural Information Processing Systems (NIPS 2011), Granada, Spain, 13–17 December 2011; Volume 24. [Google Scholar]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Wu, J.; Chen, X.Y.; Zhang, H.; Xiong, L.D.; Lei, H.; Deng, S.H. Hyperparameter optimization for machine learning models based on Bayesian optimization. J. Electron. Sci. Technol. 2019, 17, 26–40. [Google Scholar]
- Chou, P.A.; Gray, R.M. On decision trees for pattern recognition. In Proceedings of the IEEE Symposium on Information Theory, Ann Arbor, MI, USA, 5–9 October 1986; Volume 69. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Swain, P.H.; Hauska, H. The decision tree classifier: Design and potential. IEEE Trans. Geosci. Electron. 1977, 15, 142–147. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, Y. Ensemble Machine Learning: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Biau, G. Analysis of a random forests model. J. Mach. Learn. Res. 2012, 13, 1063–1095. [Google Scholar]
- Wang, C.; Deng, C.; Wang, S. Imbalance-XGBoost: Leveraging weighted and focal losses for binary label-imbalanced classification with XGBoost. Pattern Recognit. Lett. 2020, 136, 190–197. [Google Scholar] [CrossRef]
- Olson, R.S.; Moore, J.H. TPOT: A Tree-based Pipeline Optimization Tool for Automating Machine Learning. In Proceedings of the Workshop on Automatic Machine Learning; Hutter, F., Kotthoff, L., Vanschoren, J., Eds.; PMLR: New York, NY, USA, 2016; Volume 64, pp. 66–74. [Google Scholar]
- Zheng, A.; Casari, A. Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2018. [Google Scholar]
- Gonzales, R.C.; Woods, R.E. Digital Image Processing; Pearson/Prentice Hall: Hoboken, NJ, USA, 2002. [Google Scholar]
- Kunttu, I.; Lepisto, L.; Rauhamaa, J.; Visa, A. Multiscale Fourier descriptor for shape classification. In Proceedings of the 12th International Conference on Image Analysis and Processing, Mantova, Italy, 17–19 September 2003; pp. 536–541. [Google Scholar] [CrossRef]
- Stollnitz, E.J.; DeRose, A.; Salesin, D.H. Wavelets for computer graphics: A primer. 1. IEEE Comput. Graph. Appl. 1995, 15, 76–84. [Google Scholar] [CrossRef]
- Debnath, L.; Shah, F.A. Wavelet Transforms and Their Applications; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Hajizadeh, Y. Machine learning in oil and gas; a SWOT analysis approach. J. Pet. Sci. Eng. 2019, 176, 661–663. [Google Scholar] [CrossRef]
- Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media: Sebastopol, CA, USA, 2019. [Google Scholar]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Haghighi, S.; Jasemi, M.; Hessabi, S.; Zolanvari, A. PyCM: Multiclass confusion matrix library in Python. J. Open Source Softw. 2018, 3, 729. [Google Scholar] [CrossRef] [Green Version]
- Lemaître, G.; Nogueira, F.; Aridas, C.K. Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. J. Mach. Learn. Res. 2017, 18, 1–5. [Google Scholar]
- Lee, G.R.; Gommers, R.; Waselewski, F.; Wohlfahrt, K.; O’Leary, A. PyWavelets: A Python package for wavelet analysis. J. Open Source Softw. 2019, 4, 1237. [Google Scholar] [CrossRef]
- Rousseeuw, P.J.; Croux, C. Explicit scale estimators with high breakdown point. L1-Stat. Anal. Relat. Methods 1992, 1, 77–92. [Google Scholar]
- Fix, E.; Hodges, J.L. An Important Contribution to Nonparametric Discriminant Analysis and Density Estimation. Int. Stat. Rev. 1989, 57, 233–238. [Google Scholar] [CrossRef]
- Schapire, R.E.; Freund, Y.; Bartlett, P.; Lee, W.S. Boosting the margin: A new explanation for the effectiveness of voting methods. Ann. Stat. 1998, 26, 1651–1686. [Google Scholar] [CrossRef]
- Fan, R.E.; Chang, K.W.; Hsieh, C.J.; Wang, X.R.; Lin, C.J. LIBLINEAR: A library for large linear classification. J. Mach. Learn. Res. 2008, 9, 1871–1874. [Google Scholar]
- Chan, T.F.; Golub, G.H.; LeVeque, R.J. Updating formulae and a pairwise algorithm for computing sample variances. In COMPSTAT 1982 5th Symposium Held at Toulouse 1982; Springer: Berlin/Heidelberg, Germany, 1982; pp. 30–41. [Google Scholar]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef] [Green Version]
- Sen, A.; Islam, M.M.; Murase, K.; Yao, X. Binarization With Boosting and Oversampling for Multiclass Classification. IEEE Trans. Cybern. 2016, 46, 1078–1091. [Google Scholar] [CrossRef]
- ali Bagheri, M.; Montazer, G.A.; Escalera, S. Error correcting output codes for multiclass classification: Application to two image vision problems. In Proceedings of the The 16th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP 2012), Shiraz, Iran, 2–3 May 2012; pp. 508–513. [Google Scholar]
- Keeping, E.S. Introduction to Statistical Inference; Courier Corporation: New York, NY, USA, 1995. [Google Scholar]
- Manning, C.D.; Raghavan, P.; Schutze, H. Introduction to Information Retrieval? Cambridge University Press: Cambridge, UK, 2008; Volume 20, pp. 405–416. [Google Scholar]
- Tipping, M.E.; Bishop, C.M. Probabilistic principal component analysis. J. R. Stat. Soc. 1999, 61, 611–622. [Google Scholar] [CrossRef]
- McCallum, A.; Nigam, K. A comparison of event models for naive bayes text classification. In AAAI-98 Workshop on Learning for Text Categorization; Citeseer: State College, PA, USA, 1998; Volume 752, pp. 41–48. [Google Scholar]
Type of Operation Modes and Automation Fails | Number of Cards |
---|---|
Normal | 10,282 |
Gas interference | 260 |
Fluid pound | 38,298 |
Traveling valve leak | 67 |
Standing valve leak | 172 |
Rod parted | 29 |
Gas lock | 6 |
Tubing anchor malfunction | 30 |
Sensor fault—rotated card | 895 |
Sensor fault—line card | 73 |
Resource | Tag |
---|---|
Fourier descriptors | Fourier |
Wavelet descriptors | Wavelet |
Load values | Loads |
Decision tree | DTree |
Random forest | RandomF |
XGBoost | XgB |
AutoML | AML |
Balanced training dataset | Balanced |
Imbalanced training dataset | Imbalanced |
With hyperparameter tuning | WithTuning |
No hyperparameter tuning | NoTuning |
Group A | Group B | Group C | Group D | |
---|---|---|---|---|
ML algorithms | Decision tree, Random forest and XGBoost | AutoML | Decision tree, Random forest and XGBoost | Decision tree |
Number of instances per class | 30 | 30 | 90 | 180 |
Test set size | 50,098 | 50,098 | 50,098 | 50,098 |
Number of tests | 9 | 3 | 9 | 3 |
Maximum accuracy (%) | 86.005 | 84.516 | 97.900 | 98.174 |
Pipeline | |
---|---|
Loads + AML | RobustScaler [76] + KNeighborsClassifier [77] |
Fourier + AML | GradientBoostingClassifier [78] + KNeighborsClassifier |
Wavelet + AML | LinearSVC [79] + GaussianNB [80] + ExtraTreesClassifier [81] |
Type Card | Total | Percentage |
---|---|---|
Normal | 8225 | 20.52% |
Gas interference | 208 | 0.52% |
Fluid pound | 30,628 | 76.42% |
Traveling valve leak | 54 | 0.13% |
Standing valve leak | 137 | 0.34% |
Rod parted | 23 | 0.06% |
Gas lock | 5 | 0.01% |
Tubing anchor malfunction | 24 | 0.06% |
Automation fail—rotated card | 716 | 1.79% |
Automation fail—line card | 58 | 0.14% |
Group E | Group F | Group G | |
---|---|---|---|
ML algorithms | Decision tree, random forest and XGBoost | Decision tree, random forest and XGBoost | AutoML |
Training set state | Balanced and imbalanced | Balanced and imbalanced | Balanced and imbalanced |
With or without tuning in? | No | Yes | Yes |
Training set size | 40,078 | 40,078 | 40,078 |
Test set size | 10,020 | 10,020 | 10,020 |
Number of tests | 18 | 12 | 6 |
Maximum accuracy (%) | 99.81 | 99.82 | 99.84 |
Pipeline | |
---|---|
Loads + AML + imbalanced | KNeighborsClassifier |
Fourier + AML + imbalanced | Normalizer + KNeighborsClassifier |
Wavelet + AML + imbalanced | Normalizer + KNeighborsClassifier |
Loads + AML + balanced | RandomForest |
Fourier + AML + balanced | MultinomialNB [85] + PCA [86] + KNeighborsClassifier |
Wavelet + AML + balanced | BernoulliNB [87] + ExtraTreesClassifier |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, J.; Maitelli, A.; Maitelli, C.; Cavalcanti, A. Diagnostic of Operation Conditions and Sensor Faults Using Machine Learning in Sucker-Rod Pumping Wells. Sensors 2021, 21, 4546. https://doi.org/10.3390/s21134546
Nascimento J, Maitelli A, Maitelli C, Cavalcanti A. Diagnostic of Operation Conditions and Sensor Faults Using Machine Learning in Sucker-Rod Pumping Wells. Sensors. 2021; 21(13):4546. https://doi.org/10.3390/s21134546
Chicago/Turabian StyleNascimento, João, André Maitelli, Carla Maitelli, and Anderson Cavalcanti. 2021. "Diagnostic of Operation Conditions and Sensor Faults Using Machine Learning in Sucker-Rod Pumping Wells" Sensors 21, no. 13: 4546. https://doi.org/10.3390/s21134546
APA StyleNascimento, J., Maitelli, A., Maitelli, C., & Cavalcanti, A. (2021). Diagnostic of Operation Conditions and Sensor Faults Using Machine Learning in Sucker-Rod Pumping Wells. Sensors, 21(13), 4546. https://doi.org/10.3390/s21134546