Haziness Degree Evaluator: A Knowledge-Driven Approach for Haze Density Estimation
<p>Optical hazy image formation.</p> "> Figure 2
<p>An illustration of a hazy image and its corresponding haze-relevant features. (<b>a</b>) Hazy image, and its (<b>b</b>) dark channel, (<b>c</b>) contrast, (<b>d</b>) saturation × value, (<b>e</b>) chroma, (<b>f</b>) variance of chroma, (<b>g</b>) colorfulness, (<b>h</b>) sharpness, (<b>i</b>) hue disparity, (<b>j</b>) image entropy, and (<b>k</b>) reference color bar.</p> "> Figure 3
<p>The normalized histograms of nine haze-relevant features. The horizontal axis is the normalized feature value, and the vertical axis is the pertinent frequency of occurrence.</p> "> Figure 4
<p>An overview of the proposed haziness degree evaluator’s derivation.</p> "> Figure 5
<p>The absolute values of the Pearson correlation coefficients between haze-relevant features.</p> "> Figure 6
<p>Illustration of the correlation and computation analysis for feature selection: (<b>a</b>) the first round, (<b>b</b>) the second round, and (<b>c</b>) the third round.</p> "> Figure 7
<p>Illustration of a hazy image and its corresponding transmission map estimates. (<b>a</b>) Hazy image, and its (<b>b</b>) transmission map estimate based on the dark channel, (<b>c</b>) optimal transmission map derived in this study, and (<b>d</b>) reference color bar.</p> "> Figure 8
<p>The scatter plot of the HDE<math display="inline"><semantics> <msub> <mrow/> <mi>β</mi> </msub> </semantics></math> values of images in the IVC and O-HAZE datasets.</p> "> Figure 9
<p>Classification accuracy as a function of <math display="inline"><semantics> <mi>γ</mi> </semantics></math>.</p> "> Figure 10
<p>Scatter plot of the HDE values of images in the IVC and O-HAZE datasets after image intensity emphasis.</p> "> Figure 11
<p>Block diagram of the HDE-based dehazing algorithm.</p> "> Figure 12
<p>A qualitative comparison of the HDE-based dehazing algorithm with state-of-the-art methods on real images.</p> "> Figure 13
<p>The block diagrams of two benchmark evaluators.</p> "> Figure 14
<p>A comparison of the proposed evaluator with state-of-the-art evaluators: (<b>a</b>) false-negative cases, (<b>b</b>) false-positive cases, and (<b>c</b>) superior cases.</p> ">
Abstract
:1. Introduction
- This study presents a simple correlation and computation analysis to select image features that are haze-relevant and computationally efficient.
- With the selected features, this study formulates an analytically solvable objective function that simultaneously maximizes the scene radiance’s saturation, brightness, and sharpness, and minimizes the dark channel, which yields a closed-form formula for quantifying haze density from a single image.
- This study demonstrates that applying the proposed HDE to a particular task of hazy/haze-free image classification results in an accuracy of approximately , which surpasses those of two benchmark metrics and human observers.
2. Preliminaries
2.1. Hazy Image Formation
2.2. Haze-Relevant Features
3. Haziness Degree Evaluator
3.1. Overview of HDE Derivation
3.2. Employed Datasets
3.3. Correlation and Computation Analysis
3.4. HDE Formula via Analytical Optimization of Objective Function
3.5. Necessity of Using Multiple Haze-Relevant Features to Derive the HDE
- Observing hazy and haze-free images, investigating statistical measures to discover regularities, and relating them to one or several image features.
- Utilizing the discovered features to infer the requisites for scene radiance recovery.
4. HDE-Based Applications
4.1. Hazy/Haze-Free Image Classification
4.2. Dehazing Performance Assessment
4.3. Single Image Dehazing
- The HDE-based algorithm by-passes the input image if it is haze-free.
- Otherwise, it outputs the result of the image dehazing branch.
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Class | FADE | DF | |
---|---|---|---|
0.9866 | 0.2968 | 0.8811 | |
P | 1020 | ||
863 | 242 | 929 | |
84.6% | 23.7% | 91.1% | |
157 | 778 | 91 | |
15.4% | 76.3% | 8.9% | |
N | 552 | ||
446 | 508 | 507 | |
80.8% | 92.0% | 91.9% | |
106 | 44 | 45 | |
19.2% | 8.0% | 8.1% | |
83.3% | 47.7% | 91.4% |
References
- Narasimhan, S.G.; Nayar, S.K. Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 713–724. [Google Scholar] [CrossRef] [Green Version]
- Schechner, Y.Y.; Narasimhan, S.G.; Nayar, S.K. Instant dehazing of images using polarization. In Proceedings of the 2001 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Kauai, HI, USA, 8–14 December 2001; pp. I-325–I-332. [Google Scholar] [CrossRef] [Green Version]
- Hautiere, N.; Tarel, J.-P.; Lavenant, J.; Aubert, D. Automatic fog detection and estimation of visibility distance through use of an onboard camera. Mach. Vis. Appl. 2006, 17, 8–20. [Google Scholar] [CrossRef]
- Kopf, J.; Neubert, B.; Chen, B.; Cohen, M.; Cohen-Or, D.; Deussen, O.; Uyttendaele, M.; Lischinski, D. Deep photo: Model-based photograph enhancement and viewing. ACM Trans. Graph. 2008, 27, 116. [Google Scholar] [CrossRef] [Green Version]
- Tan, R.T. Visibility in bad weather from a single image. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 2341–2353. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Tarel, J.-P.; Hautiere, N. Fast visibility restoration from a single color or gray level image. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision (ICCV), Kyoto, Japan, 29 September–2 October 2009; pp. 2201–2208. [Google Scholar] [CrossRef]
- Kim, G.-J.; Lee, S.; Kang, B. Single image haze removal using hazy particle maps. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2018, E101, 1999–2002. [Google Scholar] [CrossRef]
- Berman, D.; Treibitz, T.; Avidan, S. Single image dehazing using haze-lines. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 720–734. [Google Scholar] [CrossRef]
- Raikwar, S.C.; Tapaswi, S. Lower bound on transmission using non-linear bounding function in single image dehazing. IEEE Trans. Image Process. 2020, 29, 4832–4847. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, C.; Zhao, Y.; Yang, L. Fog density estimation and image defogging based on surrogate modeling for optical depth. IEEE Trans. Image Process. 2017, 26, 3397–3409. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, J.; Ren, W.; Zuo, W.; Cao, X. Accurate transmission estimation for removing haze and noise from a single image. IEEE Trans. Image Process. 2020, 29, 2583–2597. [Google Scholar] [CrossRef]
- Ouahabi, A. Introduction to Multiresolution Analysis. In Signal and Image Multiresolution Analysis, 1st ed.; Ouahabi, A., Castanie, F., Eds.; ISTE-Wiley: London, UK, 2012; pp. 64–74. [Google Scholar]
- Sidahmed, S.; Messali, Z.; Ouahabi, A.; Trepout, S.; Messaoudi, C.; Marco, S. Nonparametric Denoising Methods Based on Contourlet Transform with Sharp Frequency Localization: Application to Low Exposure Time Electron Microscopy Images. Entropy 2015, 17, 3461–3478. [Google Scholar] [CrossRef] [Green Version]
- Tang, K.; Yang, J.; Wang, J. Investigating haze-relevant features in a learning framework for image dehazing. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 2995–3002. [Google Scholar] [CrossRef] [Green Version]
- Ngo, D.; Lee, S.; Kang, B. Robust single-image haze removal using optimal transmission map and adaptive atmospheric light. Remote Sens. 2020, 12, 2233. [Google Scholar] [CrossRef]
- Schechner, Y.Y.; Averbuch, Y. Regularized image recovery in scattering media. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1655–1660. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Ren, W.; Cao, X. Learning interleaved cascade of shrinkage fields for joint image dehazing and denoising. IEEE Trans. Image Process. 2020, 29, 1788–1801. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. DehazeNet: An end-to-end system for single image haze removal. IEEE Trans. Image Process. 2016, 25, 5187–5198. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Peng, X.; Wang, Z.; Xu, J.; Feng, D. AOD-Net: All-in-One Dehazing Network. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4780–4788. [Google Scholar] [CrossRef]
- Zhang, J.; Tao, D. FAMED-Net: A Fast and Accurate Multi-Scale End-to-End Dehazing Network. IEEE Trans. Image Process. 2020, 29, 72–84. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.-C.; Le, T.-H.; Jaw, D.-W. DSNet: Joint semantic learning for object detection in inclement weather conditions. IEEE Trans. Pattern Anal. Mach. Intell. 2020. [CrossRef]
- Li, R.; Pan, J.; He, M.; Li, Z.; Tang, J. Task-oriented network for image dehazing. IEEE Trans. Image Process. 2020, 29, 6523–6534. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Pan, J.; Li, Z.; Tang, J. Single image dehazing via conditional generative adversarial network. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 8202–8211. [Google Scholar] [CrossRef]
- Pan, J.; Dong, J.; Liu, Y.; Zhang, J.; Ren, J.; Tang, J.; Tai, Y.W.; Yang, M.-H. Physics-based generative adversarial models for image restoration and beyond. IEEE Trans. Pattern Anal. Mach. Intell. 2020. [Google Scholar] [CrossRef] [Green Version]
- Ignatov, A.; Kobyshev, N.; Timofte, R.; Vanhoey, K.; Van Gool, L. WESPE: Weakly supervised photo enhancer for digital cameras. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 804–813. [Google Scholar] [CrossRef] [Green Version]
- Ancuti, C.; Ancuti, C.O.; De Vleeschouwer, C.; Bovik, A.C. Day and night-time dehazing by local airlight estimation. IEEE Trans. Image Process. 2020, 29, 6264–6275. [Google Scholar] [CrossRef]
- Ngo, D.; Lee, S.; Nguyen, Q.-H.; Ngo, T.M.; Lee, G.-D.; Kang, B. Single image haze removal from image enhancement perspective for real-time vision-based systems. Sensors 2020, 20, 5170. [Google Scholar] [CrossRef] [PubMed]
- Choi, L.K.; You, J.; Bovik, A.C. Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Trans. Image Process. 2015, 24, 3888–3901. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.; Shang, S. Visibility: How applicable is the century-old Koschmieder model? J. Atmos. Sci. 2016, 73, 4573–4581. [Google Scholar] [CrossRef]
- Grossberg, M.D.; Nayar, S.K. What is the space of camera response function? In Proceedings of the 2003 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Madison, WI, USA, 18–20 June 2003; p. II-602. [Google Scholar] [CrossRef] [Green Version]
- Min, X.; Zhai, G.; Gu, K.; Yang, X.; Guan, X. Objective quality evaluation of dehazed images. IEEE Trans. Intell. Transp. Syst. 2019, 20, 2879–2892. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; Hermans, C.; Bekaert, P. A fast semi-inverse approach to detect and remove the haze from a single image. In Proceedings of the 10th Asian Conference on Computer Vision (ACCV), Queenstown, New Zealand, 8–12 November 2010; pp. 501–514. [Google Scholar] [CrossRef] [Green Version]
- Hasler, D.; Suesstrunk, S.E. Measuring colorfulness in natural images. In Proceedings of the SPIE 5007 Human Vision and Electronic Imaging, Santa Clara, CA, USA, 17 June 2003; pp. 87–95. [Google Scholar] [CrossRef] [Green Version]
- Ma, K.; Liu, W.; Wang, Z. Perceptual evaluation of single image dehazing algorithms. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 3600–3604. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; Timofte, R.; De Vleeschouwer, C. O-HAZE: A dehazing benchmark with real hazy and haze-free outdoor images. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 867–875. [Google Scholar] [CrossRef] [Green Version]
- Ancuti, C.O.; Ancuti, C.; Timofte, R.; De Vleeschouwer, C. I-HAZE: A dehazing benchmark with real hazy and haze-free indoor images. In Advanced Concepts for Intelligent Vision Systems; Springer International Publishing: Cham, Switzerland, 2018; pp. 620–631. [Google Scholar]
- Ngo, D.; Lee, S.; Lee, G.-D.; Kang, B. Single-image visibility restoration: A machine learning approach and its 4K-capable hardware accelerator. Sensors 2020, 20, 5795. [Google Scholar] [CrossRef]
- Ancuti, C.O.; Ancuti, C.; Sbert, M.; Timofte, R. Dense-Haze: A benchmark for image dehazing with dense-haze and haze-free images. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 1014–1018. [Google Scholar] [CrossRef] [Green Version]
- Tarel, J.-P.; Hautiere, N.; Caraffa, L.; Cord, A.; Halmaoui, H.; Gruyer, D. Vision enhancement in homogeneous and heterogeneous fog. IEEE Intell. Transp. Syst. Mag. 2012, 4, 6–20. [Google Scholar] [CrossRef] [Green Version]
- Ancuti, C.; Ancuti, C.O.; De Vleeschouwer, C. D-HAZY: A dataset to evaluate quantitatively dehazing algorithms. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 2226–2230. [Google Scholar] [CrossRef]
- Pearson, K. Note on regression and inheritance in the case of two parents. Proc. Roy. Soc. Lond. Ser. I 1895, 58, 240–242. [Google Scholar]
- Park, D.; Park, H.; Han, D.K.; Ko, H. Single image dehazing with image entropy and information fidelity. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 4037–4041. [Google Scholar] [CrossRef]
- Pei, Y.; Huang, Y.; Zou, Q.; Zhang, X.; Wang, S. Effects of Image Degradation and Degradation Removal to CNN-based Image Classification. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 1239–1253. [Google Scholar] [CrossRef]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef] [Green Version]
- Iverson, K.E. The language—Elementary operations. In A Programming Language; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1962; pp. 11–12. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Mai, J.; Shao, L. A Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior. IEEE Trans. Image Process. 2015, 24, 3522–3533. [Google Scholar] [CrossRef] [Green Version]
- Galdran, A. Image dehazing by artificial multiple-exposure image fusion. Signal Process. 2018, 149, 135–147. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngo, D.; Lee, G.-D.; Kang, B. Improved Color Attenuation Prior for Single-Image Haze Removal. Appl. Sci. 2019, 9, 4011. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeganeh, H.; Wang, Z. Objective Quality Assessment of Tone-Mapped Images. IEEE Trans. Image Process. 2013, 22, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Hautiere, N.; Tarel, J.P.; Aubert, D.; Dumont, E. Blind contrast enhancement assessment by gradient rationing at visible edges. Image Anal. Stereol. 2008, 27, 87–95. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, Y.; Fang, S.; Kang, Y.; Chen, C.W. Fast Haze Removal for Nighttime Image Using Maximum Reflectance Prior. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7016–7024. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, Y.; Zha, Z.-J.; Tao, D. Nighttime Dehazing with a Synthetic Benchmark. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 2355–2363. [Google Scholar] [CrossRef]
- Li, B.; Ren, W.; Fu, D.; Tao, D.; Feng, D.; Zeng, W.; Wang, Z. Benchmarking Single-Image Dehazing and Beyond. IEEE Trans. Image Process. 2019, 28, 492–505. [Google Scholar] [CrossRef] [Green Version]
Dataset | Type | Hazy Images (#) | Haze-Free Images (#) | Ground Truth |
---|---|---|---|---|
IVC | Real | 25 | NA | No |
FRIDA2 | Synthetic | 264 | 66 | Yes |
D-HAZY | Synthetic | 1472 | 1472 | Yes |
O-HAZE | Real | 45 | 45 | Yes |
I-HAZE | Real | 30 | 30 | Yes |
FINEDUST | Real | 30 | NA | No |
500IMG | Real | NA | 500 | No |
Dense-Haze | Real | 55 | 55 | Yes |
ID | Symbol | Description | Computation |
---|---|---|---|
Dark channel | Equation (3) | ||
C | Contrast | Equation (4) | |
Saturation × Value | Equation (7) | ||
Chroma | Equation (8) | ||
Variance of chroma | Equation (9) | ||
Colorfulness | Equation (11) | ||
Sharpness | Equation (14) | ||
Hue disparity | Equation (17) | ||
Image entropy | Equation (16) |
True positive TP | False positive FP |
---|---|
Given: hazy images | Given: haze-free images |
Predicted: hazy | Predicted: hazy |
False negative FN | True negative TN |
Given: hazy images | Given: haze-free images |
Predicted: haze-free | Predicted: haze-free |
Class | FADE | DF | |
---|---|---|---|
0.9866 | 0.2968 | 0.4725 | |
P | 1921 | ||
1785 | 1672 | 1750 | |
92.9% | 87.0% | 91.1% | |
136 | 249 | 171 | |
7.1% | 13.0% | 8.9% | |
N | 2168 | ||
2005 | 2038 | 2084 | |
92.5% | 94.0% | 96.1% | |
163 | 130 | 84 | |
7.5% | 6.0% | 3.9% | |
92.7% | 90.7% | 93.8% |
Class | FADE | DF | HDE | |
---|---|---|---|---|
0.9866 | 0.2968 | 0.4725 | 0.8811 | |
P | 1921 | |||
1785 | 1672 | 1750 | 1843 | |
92.9% | 87.0% | 91.1% | 95.9% | |
136 | 249 | 171 | 78 | |
7.1% | 13.0% | 8.9% | 4.1% | |
N | 2168 | |||
2005 | 2038 | 2084 | 2081 | |
92.5% | 94.0% | 96.1% | 96.0% | |
163 | 130 | 84 | 87 | |
7.5% | 6.0% | 3.9% | 4.0% | |
92.7% | 90.7% | 93.8% | 96.0% |
Algorithm | He et al. [6] | Tarel and Hautiere [8] | Zhu et al. [49] | |
---|---|---|---|---|
Dataset | ||||
LIVE | assessed by | 0.1882 | 0.2172 | 0.2605 |
D-HAZY | HDE | 0.2925 | 0.3739 | 0.3674 |
LIVE | assessed by | 0.8700 | 0.7480 | 1.0480 |
FADE [50] | ||||
D-HAZY | assessed by | 0.8110 | 0.7190 | NA |
SSIM [42] |
Dataset | IVC | D-HAZY | O-HAZE | I-HAZE | |||||
---|---|---|---|---|---|---|---|---|---|
Metric | e | r | TMQI | FSIMc | TMQI | FSIMc | TMQI | FSIMc | |
Method | |||||||||
Tarel and Hautiere [8] | 1.30 | 2.15 | 0.8000 | 0.8703 | 0.8416 | 0.7733 | 0.7740 | 0.8055 | |
He et al. [6] | 0.39 | 1.57 | 0.8631 | 0.9002 | 0.8403 | 0.8423 | 0.7319 | 0.8208 | |
Zhu et al. [49] | 0.78 | 1.17 | 0.8206 | 0.8880 | 0.8118 | 0.7738 | 0.7512 | 0.8252 | |
HDE-based algorithm | 1.04 | 1.57 | 0.8564 | 0.8621 | 0.8340 | 0.8218 | 0.7677 | 0.8517 |
Evaluator | Image Size | ||||
---|---|---|---|---|---|
640 × 480 | 800 × 600 | 1024 × 768 | 1920 × 1080 | 4096 × 2160 | |
FADE | 0.45 | 0.73 | 1.11 | 2.84 | 12.36 |
DF | 0.10 | 0.18 | 0.27 | 0.70 | 3.12 |
HDE | 0.07 | 0.12 | 0.18 | 0.41 | 2.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngo, D.; Lee, G.-D.; Kang, B. Haziness Degree Evaluator: A Knowledge-Driven Approach for Haze Density Estimation. Sensors 2021, 21, 3896. https://doi.org/10.3390/s21113896
Ngo D, Lee G-D, Kang B. Haziness Degree Evaluator: A Knowledge-Driven Approach for Haze Density Estimation. Sensors. 2021; 21(11):3896. https://doi.org/10.3390/s21113896
Chicago/Turabian StyleNgo, Dat, Gi-Dong Lee, and Bongsoon Kang. 2021. "Haziness Degree Evaluator: A Knowledge-Driven Approach for Haze Density Estimation" Sensors 21, no. 11: 3896. https://doi.org/10.3390/s21113896
APA StyleNgo, D., Lee, G.-D., & Kang, B. (2021). Haziness Degree Evaluator: A Knowledge-Driven Approach for Haze Density Estimation. Sensors, 21(11), 3896. https://doi.org/10.3390/s21113896