Using High-Frequency Information and RH to Estimate AQI Based on SVR
<p>A schematic diagram of AQI and visibility changes.</p> "> Figure 2
<p>Automatic selection of the RoI flowchart.</p> "> Figure 3
<p>A flow chart of the method of estimating AQI.</p> "> Figure 4
<p>Images from the Renwu monitoring station in Kaohsiung, Taiwan; (<b>a</b>) low-AQI numerical image and (<b>b</b>) high-AQI numerical image.</p> "> Figure 5
<p>The distribution of AQI and RH values at Renwu Monitoring Station in Kaohsiung, Taiwan; (<b>a</b>) AQI value distribution and (<b>b</b>) RH value distribution.</p> "> Figure 6
<p>The image performs horizontal and vertical gradient calculations and calculates the high-frequency information.</p> "> Figure 7
<p>The method for calculating the feature value in the RoI.</p> "> Figure 8
<p>High-frequency images and feature values corresponding to different AQI values.</p> "> Figure 9
<p>A conceptual diagram of the SVM segmentation data; (<b>a</b>,<b>b</b>) show the poor segmentation results, (<b>c</b>) shows the best segmentation results.</p> "> Figure 10
<p>The conceptual difference between SVM and SVR; (<b>a</b>) the dividing line is far away from the data point; (<b>b</b>) the dividing line is close to the data point.</p> "> Figure 11
<p>Value of feature change within one hour.</p> "> Figure 12
<p>The standard deviation distribution of hourly feature values.</p> "> Figure 13
<p>The R<sup>2</sup> of the estimated AQI and the actual AQI values; (<b>a</b>) invalid data is not excluded; (<b>b</b>) invalid data is excluded.</p> "> Figure 14
<p>The RMSE of the estimated AQI and the actual AQI value; (<b>a</b>) invalid data is not excluded, (<b>b</b>) invalid data is excluded.</p> "> Figure 15
<p>The relationship between the estimated and actual AQI when the ratio of training-to-test is 7:3; (<b>a</b>) invalid data is not excluded, (<b>b</b>) invalid data is excluded.</p> ">
Abstract
:1. Introduction
2. Automatic Selection of RoI
3. To Estimate AQI with RH
3.1. Dataset
3.2. Value of Feature Calculation
3.3. Training Images and Testing Images
3.4. Support Vector Regression
3.5. Evaluation Index
4. Experiment
4.1. Exclude Invalid Data
4.2. Experimental Result
4.3. Discussion of Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, A.W.L.; Chen, Y.S.; Zhang, J.; Lyons, T.J.; Pai, J.L.; Chang, S.H. Comparison of the revised air quality index with the PSI and AQI indices. Sci. Total Environ. 2007, 382, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Administration Executive Yuan, R.O.C., Taiwan. Available online: https://airtw.epa.gov.tw/CHT/Information/Standard/AirQualityIndicator.aspx (accessed on 30 April 2021).
- Jobson, B.T.; Berkowitz, C.M.; Kuster, W.C.; Goldan, P.D.; Williams, E.J.; Fesenfeld, F.C.; Riemer, D. Hydrocarbon source signatures in Houston, Texas: Influence of the petrochemical industry. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, M.M.; Asiri, A.M.; Opo, F.A.D.M. An Electrochemical Approach for the Selective Detection of Cancer Metabolic Creatine Biomarker with Porous Nano-Formulated CMNO Materials Decorated Glassy Carbon Electrode. Sensors 2020, 20, 7060. [Google Scholar] [CrossRef]
- Yu-Sung, Y. Introduction of the Taiwan Air Quality Monitoring Stations. Instrum. Today 2005, 145, 47–53. [Google Scholar]
- Air Quality Annual Report of R.O.C. (Taiwan). Environmental Protection Agency of Taiwan Executive Yuan. 2018. Available online: https://www.epa.gov.tw/DisplayFile.aspx?FileID=9FDF33456FA1DB1F (accessed on 22 May 2021).
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69. [Google Scholar]
- Arden Pope, C., III; Douglas, W.; Dockery, J.; Spengler, D.; Raizenne, M.E. Respiratory health and PM10 pollution: A daily time series analysis. Am. Rev. Respir. Dis. 1991, 144, 668–674. [Google Scholar] [CrossRef]
- Manabe, S.; Wetherald, R.T. Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity; John Wiley & Sons Ltd: Hoboken, NJ, USA, 1967; pp. 241–259. [Google Scholar]
- David, Y.H.; Chen, P.S.-C.; Zhili, Z. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology 2014, 13, 1–26. [Google Scholar]
- Tao, J.; Ho, K.-F.; Chen, L.; Zhu, L.; Han, J.; Xu, Z. Effect of chemical composition of PM2.5 on visibility in Guangzhou, China, 2007 spring. Particuology 2009, 7, 68–75. [Google Scholar] [CrossRef]
- Watson, J.G. Visibility: Science and regulation. J. Air Waste Manag. Assoc. 2002, 52, 628–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngo, D.; Lee, S.; Ngo, T.M.; Lee, G.-D.; Kang, B. Visibility Restoration: A Systematic Review and Meta-Analysis. Sensors 2021, 21, 2625. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Yang, B.; Liu, G.; Olofsson, T.; Li, H. A Total Bounded Variation Approach to Low Visibility Estimation on Expressways. Sensors 2018, 18, 392. [Google Scholar] [CrossRef] [Green Version]
- Liu, J. Visibility distance estimation in foggy situations and single image dehazing based on transmission computation model. IET Image Process. 2018, 12, 1237–1244. [Google Scholar] [CrossRef]
- Hou, Z.; Yau, W.-Y. Visible entropy: A measure for image visibility. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 4448–4451. [Google Scholar] [CrossRef]
- Uc, E.Y.; Rizzo, M.; Anderson, S.W.; Dastrup, E.; Sparks, J.D.; Dawson, J.D. Driving under low-contrast visibility conditions in Parkinson disease. Neurology 2009, 73, 1103–1110. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.-H.; Yuan, C.-S.; Wen, C.-Y.; Liaw, J.-J.; Chiu, S.-H. Investigation of Urban Atmospheric Visibility Hsing Haar Wavelet Transform. Aerosol Air Quality Res. 2005, 5, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Ma, H.; Fu, H.; Liu, L.; Zhang, C. Outdoor air quality inference from single image. In International Conference on Multimedia Modeling; Springer: Cham, Switzerland, 2015; pp. 13–25. [Google Scholar]
- Wu, D.; Gong, J.; Liang, J.; Sun, J.; Zhang, G. Analyzing the Influence of Urban Street Greening and Street Buildings on Summertime Air Pollution Based on Street View Image Data. ISPRS Int. J. Geo-Inf. 2020, 9, 500. [Google Scholar] [CrossRef]
- Samsami, M.M.; Shojaee, N.; Savar, S.; Yazdi, M. Classification of the Air Quality Level based on Analysis of the Sky Images. In Proceedings of the 27th Iranian Conference on Electrical Engineering, Yazd, Iran, 30 April–2 May 2019; pp. 1492–1497. [Google Scholar]
- Mack, Y.P. Local properties of k-NN regression estimates. SIAM J. Algebr. Discret. Methods 1981, 2, 311–323. [Google Scholar] [CrossRef]
- Browne, M.W. Cross-validation methods. J. Math. Psychol. 2000, 44, 108–132. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Tsow, F.; Zou, Y.; Tao, N. Particle pollution estimation based on image analysis. PloS ONE 2016, 11, e0145955. [Google Scholar] [CrossRef] [PubMed]
- Matthew, B.; Anton, J.-L.; Valabregue, R.; Poline, J.-B. Region of interest analysis using an SPM toolbox. 8th Int. Conf. Funct. Mapp. Hum. Brain 2002, 16, 497. [Google Scholar]
- Luzón-González, R.; Juan, L.; Nieves, J.R. Recovering of weather degraded images based on RGB response ratio constancy. Appl. Opt. 2015, 54, B222–B231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liaw, J.-J.; Huang, Y.-F.; Hsieh, C.-H.; Lin, D.-C.; Luo, C.-H. PM2.5 Concentration Estimation Based on Image Processing Schemes and Simple Linear Regression. Sensors 2020, 20, 2423. [Google Scholar] [CrossRef] [PubMed]
- Drucker, H.; Chris, J.C.; Burges, L.K.; Smola, A.; Vapnik, V. Support vector regression machines. Adv. Neural Inf. Process. Syst. 1997, 9, 155–161. [Google Scholar]
- Ahsanullah, M.; Golam Kibria, B.M.; Shakil, M. Normal distribution. In Normal and Student´s Distributions and Their Applications; Atlantis Press: Paris, France, 2014; pp. 7–50. [Google Scholar]
- Vincent, R.O.; Folorunso, O. A descriptive algorithm for sobel image edge detection. Proceedings of Informing Science & IT Education Conference (InSITE), Macon, GA, USA, 12–15 June 2009; Informing Science Institute California: Santa Rosa, CA, USA, 2009; Volume 40. [Google Scholar]
- Gonzalez, R.C.; Woods, R.E. Image processing. In Digital Image Process; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Poole, M.A.; O’Farrell, P.N. The assumptions of the linear regression model. Trans. Inst. Br. Geogr. 1971, 145–158. [Google Scholar] [CrossRef]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef] [PubMed]
- Smola, A.J.; Schölkopf, B. A Tutorial on Support Vector Regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Bansal, N.; Defo, M.; Lacase, M.A. Application of Support Vector Regression to the Prediction of the Long-Term Impacts of Climate Change on the Moisture Performance of Wood Frame and Massive Timber Walls. Buildings 2021, 11, 188. [Google Scholar] [CrossRef]
- Akossou, A.Y.J.; Palm, R. Impact of Data Structure on the Estimators R-square and Adjusted R-square in Linear Regression. Int. J. Math. Comput. 2013, 20, 84–93. [Google Scholar]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
AQI | Concern Levels | Color | Description |
---|---|---|---|
0–50 | Good | Green | Air quality is good; little air pollution or no risk. |
51–100 | Moderate | Yellow | Air quality is acceptable. There may be a risk for some people who are sensitive to air pollution. |
101–150 | Unhealthy for sensitive groups | Orange | Sensitive people may experience health effects. The general public is less likely to be affected. |
151–200 | Unhealthy | Red | The general public may experience health effects; sensitive people may experience more serious health effects. |
201–300 | Very unhealthy | Purple | The risk of health effects is increased for everyone. |
301–500 | Hazardous | Dark red | Everyone is more likely to be affected. |
Sub-Indicator | Calculation Method |
---|---|
O3, 8h | moving average value of the last 8 h |
O3 | real-time value |
PM2.5 | 0.5 × average of the first 12 h + 0.5 × average of the first 4 h |
PM10 | 0.5 × average of the first 12 h + 0.5 × average of the first 4 h |
CO | moving average value of the last 8 h |
SO2 | real-time value |
SO2, 24h | average in the last 24 h |
NO2 | real-time value |
Training:Testing | Training Data | Test Data |
---|---|---|
1:9 | 2172 | 19,548 |
2:8 | 4344 | 17,376 |
3:7 | 6516 | 15,204 |
4:6 | 8688 | 13,032 |
5:5 | 10,860 | 10,860 |
6:4 | 13,032 | 8688 |
7:3 | 15,204 | 6516 |
8:2 | 17,376 | 4344 |
9:1 | 19,548 | 2172 |
Invalid Data not Excluded | Exclude Invalid Data | |||
---|---|---|---|---|
Training: Testing | R2 | RMSE | R2 | RMSE |
1:9 | 0.629 | 24.1 | 0.655 | 23.1 |
2:8 | 0.638 | 23.9 | 0.664 | 22.6 |
3:7 | 0.643 | 23.6 | 0.676 | 22.3 |
4:6 | 0.648 | 23.5 | 0.697 | 22.2 |
5:5 | 0.649 | 23.5 | 0.688 | 22.2 |
6:4 | 0.650 | 23.4 | 0.691 | 21.9 |
7:3 | 0.650 | 23.4 | 0.694 | 21.8 |
8:2 | 0.652 | 23.4 | 0.683 | 22.1 |
9:1 | 0.657 | 23.2 | 0.676 | 22.2 |
Average value | 0.646 | 23.5 | 0.678 | 22.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liaw, J.-J.; Chen, K.-Y. Using High-Frequency Information and RH to Estimate AQI Based on SVR. Sensors 2021, 21, 3630. https://doi.org/10.3390/s21113630
Liaw J-J, Chen K-Y. Using High-Frequency Information and RH to Estimate AQI Based on SVR. Sensors. 2021; 21(11):3630. https://doi.org/10.3390/s21113630
Chicago/Turabian StyleLiaw, Jiun-Jian, and Kuan-Yu Chen. 2021. "Using High-Frequency Information and RH to Estimate AQI Based on SVR" Sensors 21, no. 11: 3630. https://doi.org/10.3390/s21113630