Inorganic Thermoelectric Fibers: A Review of Materials, Fabrication Methods, and Applications
<p>(<b>a</b>) Scanning electron microscopy (SEM) images of the Bi<sub>2</sub>Te<sub>3</sub>/Te multisegmented nanowires based on the top-view and close-up observation. Reproduced with permission [<a href="#B26-sensors-21-03437" class="html-bibr">26</a>]. Copyright 2007, American Chemical Society. (<b>b</b>) Schematic sketch and microstructure characterization for the formation of PbTe/Bi<sub>x</sub>Te<sub>1–x</sub>/PbTe dumbbell-like, heterostructured nanowires. Reproduced with permission [<a href="#B27-sensors-21-03437" class="html-bibr">27</a>]. Copyright 2010, Wiley. (<b>c</b>) TEM images of the interfaces of an individual Te/Bi core/shell nanowire. Reproduced with permission [<a href="#B33-sensors-21-03437" class="html-bibr">33</a>]. Copyright 2008, Wiley. (<b>d</b>) Sketch of the molten core drawing process. (<b>e</b>) Electron micrograph image of the cross-section and (<b>f</b>) longitudinal section of the Bi<sub>2</sub>Te<sub>3</sub> core fiber sample. Reproduced with permission [<a href="#B28-sensors-21-03437" class="html-bibr">28</a>]. Copyright 2018, American Institute of Physics. (<b>g</b>) The SEM images of pristine and trimmed Bi–Sb–Te nanowire with sizes of 750, 490, and 285 nm, respectively. Reproduced under a Creative Commons Attribution 4.0 International License [<a href="#B29-sensors-21-03437" class="html-bibr">29</a>]. Copyright 2016, Springer Nature. (<b>h</b>) A miniature uni-couple fabricated from the sintered p-type/B<sub>i0.4</sub>Sb<sub>1.6</sub>Te<sub>3</sub> and n-type/Bi<sub>2</sub>Te<sub>2.7</sub>S<sub>e0.3</sub> fibers. Reproduced with permission [<a href="#B30-sensors-21-03437" class="html-bibr">30</a>]. Copyright 2016, Springer. (<b>i</b>) Single TE fiber and (<b>j</b>) its cross-sectional SEM image. (<b>k</b>) A large-area wearable TE device constructed by TE fibers. Reproduced with permission [<a href="#B32-sensors-21-03437" class="html-bibr">32</a>]. Copyright 2017, Elsevier.</p> "> Figure 2
<p>(<b>a</b>) TEM image of PbTe nanocrystals; upper inset is the size distribution of PbTe nanocrystals. (<b>b</b>) Scheme of the coating procedure to fabricate the bare glass fibers and PbTe nanocrystal-coated glass fibers. (<b>c</b>) SEM image of glass fibers coated by PbTe nanocrystal with a thickness ~300 nm. Reproduced with permission [<a href="#B34-sensors-21-03437" class="html-bibr">34</a>]. Copyright 2012, American Chemical Society. (<b>d</b>) Low-resolution TEM image of PbTe nanocrystals with the inset of size distribution. (<b>e</b>–<b>h</b>) Cross-section SEM images of cut ends of glass fibers based on PbTe samples. (<b>i</b>) SEM image of the PbTe fiber sample used for 3ω measurements. Reproduced with permission [<a href="#B38-sensors-21-03437" class="html-bibr">38</a>]. Copyright 2013, American Chemical Society.</p> "> Figure 3
<p>(<b>a</b>) Schematic diagram demonstrating Ag<sub>2</sub>Te nanowires and (<b>b</b>) the detailed process of fabricating paper coated with Ag<sub>2</sub>Te films. (<b>c</b>) One piece of paper constructed by four sheets of parallel (9 mm × 5 mm) Ag<sub>2</sub>Te nanowire films and a clover-like shape with three sheets (20 mm × 3 mm). (<b>d</b>) Representative SEM images of Ag<sub>2</sub>Te glass fiber sheet and (<b>e</b>) coated with Ag<sub>2</sub>Te nanowires dispersions. Reproduced with permission from Royal Society of Chemistry [<a href="#B41-sensors-21-03437" class="html-bibr">41</a>]. (<b>f</b>–<b>g</b>) High-definition SEM images of synthesized Ag<sub>x</sub>Te<sub>y</sub> hollow nanofibers; inserted are low-magnification pictures. (<b>h</b>) The TEM pictures and (<b>i</b>) line-scan EDS analysis of Ag<sub>x</sub>Te<sub>y</sub> nanofibers. Reproduced with permission [<a href="#B40-sensors-21-03437" class="html-bibr">40</a>]. Copyright 2015, American Chemical Society.</p> "> Figure 4
<p>(<b>a</b>) Photograph of SnSe fibers. (<b>b</b>) Single SnSe fiber and its optical microscope image without polymer coating. (<b>c</b>) Fabrication of single-crystal SnSe-core fiber based on CO<sub>2</sub> laser taper process. (<b>d</b>) Demonstrations of multidimensional SnSe fabric for converting heat to electricity. Reproduced with permission [<a href="#B31-sensors-21-03437" class="html-bibr">31</a>]. Copyright 2020, Wiley. (<b>e</b>) Scanning electron microscopy (SEM) image of the as-grown SnSe nanowires. (<b>f</b>) Energy-dispersive X-ray spectroscopy mapping for a measured SnSe nanowire (480 nm diameter). (<b>g</b>) The low- and high-magnification SEM images of SnSe nanowire, from left to right, transferred onto the microdevice. Reproduced under a Creative Commons Attribution 4.0 International License [<a href="#B50-sensors-21-03437" class="html-bibr">50</a>]. Copyright 2018, Springer Nature.</p> "> Figure 5
<p>(<b>a</b>–<b>d</b>) SEM images of synthesized NaCo<sub>2</sub>O<sub>4</sub> nanofibers using two different solvents before and after annealing. (<b>d</b>) Sketch of the molten core drawing process. (<b>e</b>) SEM image of as-spun nanofiber mat before annealing. (<b>f</b>) SEM images of nanofibrous mat annealed at 750 °C for 10 min. Reproduced with permission [<a href="#B61-sensors-21-03437" class="html-bibr">61</a>]. Copyright 2010, American Chemical Society. (<b>g</b>) SEM micrographs of sodium acetate/cobalt acetate/PAN composite fibers and (<b>h</b>) NaCo<sub>2</sub>O<sub>4</sub> fibers. (<b>i</b>) A single-aligned NaCo<sub>2</sub>O<sub>4</sub> fiber coated on Si substrate. Reproduced with permission [<a href="#B57-sensors-21-03437" class="html-bibr">57</a>]. Copyright 2006, Elsevier. (<b>j</b>) The measurement of I–V curve for nanofiber. (<b>k</b>) Electrostatic force microscopy (EFM) contrast variation in NaCo<sub>2</sub>O<sub>4</sub> nanofiber vs. bias voltage with different heating voltages. Reproduced with permission [<a href="#B61-sensors-21-03437" class="html-bibr">61</a>]. Copyright 2010, American Chemical Society.</p> ">
Abstract
:1. Introduction
2. Inorganic Synthetic Fibers
2.1. Bi2(Te, Se)3-Based Nanofibers
2.2. PbTe-Based Fibers
2.3. Ag2Te-Based Fibers
2.4. SnSe-Based Fibers
2.5. NaCo2O4-Based Fibers
3. Breakdown and Conclusions
4. Prospects and Future Development
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, X.-L.; Zou, J.; Chen, Z.-G. Advanced thermoelectric design: From materials and structures to devices. Chem. Rev. 2020, 120, 7399–7515. [Google Scholar] [CrossRef] [PubMed]
- Petsagkourakis, I.; Tybrandt, K.; Crispin, X.; Ohkubo, I.; Satoh, N.; Mori, T. Thermoelectric materials and applications for energy harvesting power generation. Sci. Technol. Adv. Mater. 2018, 19, 836–862. [Google Scholar] [CrossRef] [PubMed]
- Dargusch, M.; Liu, W.D.; Chen, Z.G. Thermoelectric generators: Alternative power supply for wearable electrocardiographic systems. Adv. Sci. 2020, 7, 2001362. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Hao, S.; Cai, S.; Slade, T.J.; Luo, Z.Z.; Dravid, V.P.; Wolverton, C.; Yan, Q.; Kanatzidis, M.G. High Thermoelectric Performance in the New Cubic Semiconductor AgSnSbSe3 by High-Entropy Engineering. J. Am. Chem. Soc. 2020, 142, 15187–15198. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, L.-D. Seeking new, highly effective thermoelectrics. Science 2020, 367, 1196–1197. [Google Scholar] [CrossRef]
- Xin, J.; Li, S.; Yang, J.; Basit, A.; Long, Q.; Li, S.; Jiang, Q.; Xu, T.; Xiao, B. Tactfully decoupling interdependent electrical parameters via interstitial defects for SnTe thermoelectrics. Nano Energy 2019, 67, 104292. [Google Scholar] [CrossRef]
- Li, S.; Xin, J.; Basit, A.; Long, Q.; Yang, J. In Situ Reaction Induced Core–Shell Structure to Ultralow κ lat and High Thermoelectric Performance of SnTe. Adv. Sci. 2020, 7, 1903493. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.W.; Yang, J.Y.; Jiang, Q.H.; Lin, X.S.; Xin, J.W.; Basit, A.; Hou, J.D.; Sun, B.Y. Enhanced thermoelectric performance of SnTe: High efficient cation—Anion Co-doping, hierarchical microstructure and electro-acoustic decoupling. Nano Energy 2018, 47, 81–88. [Google Scholar] [CrossRef]
- Ding, Y.; Qiu, Y.; Cai, K.; Yao, Q.; Chen, S.; Chen, L.; He, J. High performance n-type Ag 2 Se film on nylon membrane for flexible thermoelectric power generator. Nat. Commun. 2019, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Fang, H.; Yang, H.; Jauregui, L.A.; Chen, Y.P.; Wu, Y. Design principle of telluride-based nanowire heterostructures for potential thermoelectric applications. Nano Lett. 2012, 12, 3627–3633. [Google Scholar] [CrossRef] [Green Version]
- Ohnishi, M.; Shiga, T.; Shiomi, J. Effects of defects on thermoelectric properties of carbon nanotubes. Phys. Rev. B 2017, 95, 155405. [Google Scholar] [CrossRef] [Green Version]
- Heremans, J.P.; Jovovic, V.; Toberer, E.S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G.J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008, 321, 554–557. [Google Scholar] [CrossRef] [Green Version]
- Wan, C.; Tian, R.; Kondou, M.; Yang, R.; Zong, P.; Koumoto, K. Ultrahigh thermoelectric power factor in flexible hybrid inorganic-organic superlattice. Nat. Commun. 2017, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Snyder, G.J.; Toberer, E.S. Complex Thermoelectric Materials. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group; World Scientific: Singapore, 2011; pp. 101–110. [Google Scholar]
- Zhou, M.; Li, J.-F.; Kita, T. Nanostructured AgPb m SbTe m+ 2 system bulk materials with enhanced thermoelectric performance. J. Am. Chem. Soc. 2008, 130, 4527–4532. [Google Scholar] [CrossRef]
- Canales, A.; Jia, X.; Froriep, U.P.; Koppes, R.A.; Tringides, C.M.; Selvidge, J.; Lu, C.; Hou, C.; Wei, L.; Fink, Y. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 2015, 33, 277–284. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Z.; Zhang, Q.; Wang, Z.; Liu, W.; Chen, M.; Wei, L. Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing. Nat. Commun. 2021, 12, 1–10. [Google Scholar]
- Yan, W.; Page, A.; Nguyen-Dang, T.; Qu, Y.; Sordo, F.; Wei, L.; Sorin, F. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv. Mater. 2019, 31, 1802348. [Google Scholar] [CrossRef]
- Lu, Y.; Qiu, Y.; Cai, K.; Ding, Y.; Wang, M.; Jiang, C.; Yao, Q.; Huang, C.; Chen, L.; He, J. Ultrahigh power factor and flexible silver selenide-based composite film for thermoelectric devices. Energy Environ. Sci. 2020, 13, 1240–1249. [Google Scholar] [CrossRef]
- Shi, X.-L.; Chen, W.-Y.; Zhang, T.; Zou, J.; Chen, Z.-G. Fiber-based thermoelectrics for solid, portable, and wearable electronics. Energy Environ. Sci. 2021, 14, 729–764. [Google Scholar] [CrossRef]
- Loke, G.; Yan, W.; Khudiyev, T.; Noel, G.; Fink, Y. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv. Mater. 2020, 32, 1904911. [Google Scholar] [CrossRef]
- Yan, W.; Dong, C.; Xiang, Y.; Jiang, S.; Leber, A.; Loke, G.; Xu, W.; Hou, C.; Zhou, S.; Chen, M. Thermally drawn advanced functional fibers: New frontier of flexible electronics. Mater. Today 2020, 35, 168–194. [Google Scholar] [CrossRef]
- Keshavarz, M.; Wales, D.J.; Seichepine, F.; Abdelaziz, M.E.; Kassanos, P.; Li, Q.; Temelkuran, B.; Shen, H.; Yang, G.-Z. Induced neural stem cell differentiation on a drawn fiber scaffold—Toward peripheral nerve regeneration. Biomed. Mater. 2020, 15, 055011. [Google Scholar] [CrossRef]
- Booth, M.A.; Gowers, S.A.; Hersey, M.; Samper, I.C.; Park, S.; Anikeeva, P.; Hashemi, P.; Stevens, M.M.; Boutelle, M.G. Fiber-Based Electrochemical Biosensors for Monitoring pH and Transient Neurometabolic Lactate. Anal. Chem. 2021, 93, 6646–6655. [Google Scholar] [CrossRef]
- Masuda, H.; Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 1995, 268, 1466–1468. [Google Scholar] [CrossRef]
- Wang, W.; Lu, X.; Zhang, T.; Zhang, G.; Jiang, W.; Li, X. Bi2Te3/Te multiple heterostructure nanowire arrays formed by confined precipitation. J. Am. Chem. Soc. 2007, 129, 6702–6703. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, Q.; Wang, W.; Li, X. Nanostructures for thermoelectric applications: Synthesis, growth mechanism, and property studies. Adv. Mater. 2010, 22, 1959–1962. [Google Scholar] [CrossRef]
- Sun, M.; Qian, Q.; Tang, G.; Liu, W.; Qian, G.; Shi, Z.; Huang, K.; Chen, D.; Xu, S.; Yang, Z. Enhanced thermoelectric properties of polycrystalline Bi2Te3 core fibers with preferentially oriented nanosheets. APL Mater. 2018, 6, 036103. [Google Scholar] [CrossRef] [Green Version]
- Chien, C.-H.; Lee, P.-C.; Tsai, W.-H.; Lin, C.-H.; Lee, C.-H.; Chen, Y.-Y. In-situ observation of size and irradiation effects on thermoelectric properties of Bi-Sb-Te nanowire in FIB trimming. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, F.; Menchhofer, P.; Kiggans, J.; Wang, H. Development of thermoelectric fibers for miniature thermoelectric devices. J. Electron. Mater. 2016, 45, 1412–1418. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, T.; Zhang, H.; Wang, Z.; Li, C.; Wang, Z.; Li, K.; Huang, X.; Chen, M.; Chen, Z. Single-Crystal SnSe Thermoelectric Fibers via Laser-Induced Directional Crystallization: From 1D Fibers to Multidimensional Fabrics. Adv. Mater. 2020, 32, 2002702. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, K.; Zhang, J.; Chen, M.; Wang, Z.; Ma, S.; Zhang, N.; Wei, L. High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy 2017, 41, 35–42. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, W.; Li, X. Enhanced thermoelectric properties of core/shell heterostructure nanowire composites. Adv. Mater. 2008, 20, 3654–3656. [Google Scholar] [CrossRef]
- Liang, D.; Yang, H.; Finefrock, S.W.; Wu, Y. Flexible nanocrystal-coated glass fibers for high-performance thermoelectric energy harvesting. Nano Lett. 2012, 12, 2140–2145. [Google Scholar] [CrossRef]
- Luther, J.M.; Beard, M.C.; Song, Q.; Law, M.; Ellingson, R.J.; Nozik, A.J. Multiple exciton generation in films of electronically coupled PbSe quantum dots. Nano Lett. 2007, 7, 1779–1784. [Google Scholar] [CrossRef]
- Luther, J.M.; Law, M.; Beard, M.C.; Song, Q.; Reese, M.O.; Ellingson, R.J.; Nozik, A.J. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 2008, 8, 3488–3492. [Google Scholar] [CrossRef]
- Ma, W.; Luther, J.M.; Zheng, H.; Wu, Y.; Alivisatos, A.P. Photovoltaic devices employing ternary pbs x se1-x nanocrystals. Nano Lett. 2009, 9, 1699–1703. [Google Scholar] [CrossRef] [Green Version]
- Finefrock, S.W.; Wang, Y.; Ferguson, J.B.; Ward, J.V.; Fang, H.; Pfluger, J.E.; Dudis, D.S.; Ruan, X.; Wu, Y. Measurement of thermal conductivity of pbte nanocrystal coated glass fibers by the 3ω method. Nano Lett. 2013, 13, 5006–5012. [Google Scholar] [CrossRef] [Green Version]
- Shamsa, M.; Liu, W.; Balandin, A.; Casiraghi, C.; Milne, W.; Ferrari, A. Thermal conductivity of diamond-like carbon films. Appl. Phys. Lett. 2006, 89, 161921. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Park, H.; Kim, J.; Park, H.; Wu, T.; Kim, S.; Park, S.-D.; Choa, Y.; Myung, N.V. Thermoelectric properties of ultralong silver telluride hollow nanofibers. Chem. Mater. 2015, 27, 5189–5197. [Google Scholar] [CrossRef]
- Gao, J.; Miao, L.; Liu, C.; Wang, X.; Peng, Y.; Wei, X.; Zhou, J.; Chen, Y.; Hashimoto, R.; Asaka, T. A novel glass-fiber-aided cold-press method for fabrication of n-type Ag 2 Te nanowires thermoelectric film on flexible copy-paper substrate. J. Mater. Chem. A 2017, 5, 24740–24748. [Google Scholar] [CrossRef]
- Gao, J.; Liu, C.; Miao, L.; Wang, X.; Peng, Y.; Chen, Y. Enhanced power factor in flexible reduced graphene oxide/nanowires hybrid films for thermoelectrics. RSC Adv. 2016, 6, 31580–31587. [Google Scholar] [CrossRef]
- Zhang, M.; Kim, J.; Kim, S.; Park, H.; Jung, H.; Ndifor-Angwafor, N.G.; Lim, J.; Choa, Y.; Myung, N.V. Galvanically Displaced Ultralong Pb x Se y Ni z Hollow Nanofibers with High Thermopower. Chem. Mater. 2014, 26, 2557–2566. [Google Scholar] [CrossRef]
- Park, H.; Jung, H.; Zhang, M.; Chang, C.H.; Ndifor-Angwafor, N.G.; Choa, Y.; Myung, N.V. Branched tellurium hollow nanofibers by galvanic displacement reaction and their sensing performance toward nitrogen dioxide. Nanoscale 2013, 5, 3058–3062. [Google Scholar] [CrossRef]
- Butt, F.K.; Mirza, M.; Cao, C.; Idrees, F.; Tahir, M.; Safdar, M.; Ali, Z.; Tanveer, M.; Aslam, I. Synthesis of mid-infrared SnSe nanowires and their optoelectronic properties. CrystEngComm 2014, 16, 3470–3473. [Google Scholar] [CrossRef]
- Mavrokefalos, A.; Pettes, M.T.; Zhou, F.; Shi, L. Four-probe measurements of the in-plane thermoelectric properties of nanofilms. Rev. Sci. Instrum. 2007, 78, 034901. [Google Scholar] [CrossRef]
- Shi, L.; Li, D.; Yu, C.; Jang, W.; Kim, D.; Yao, Z.; Kim, P.; Majumdar, A. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transf. 2003, 125, 881–888. [Google Scholar] [CrossRef]
- Pettes, M.T.; Shi, L. Thermal and structural characterizations of individual single-, double-, and multi-walled carbon nanotubes. Adv. Funct. Mater. 2009, 19, 3918–3925. [Google Scholar] [CrossRef]
- Valentín, L.; Betancourt, J.; Fonseca, L.; Pettes, M.; Shi, L.; Soszyński, M.; Huczko, A. A comprehensive study of thermoelectric and transport properties of β-silicon carbide nanowires. J. Appl. Phys. 2013, 114, 184301. [Google Scholar] [CrossRef]
- Hernandez, J.A.; Ruiz, A.; Fonseca, L.F.; Pettes, M.T.; Jose-Yacaman, M.; Benitez, A. Thermoelectric properties of SnSe nanowires with different diameters. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Julien, M.-H.; de Vaulx, C.; Mayaffre, H.; Berthier, C.; Horvatić, M.; Simonet, V.; Wooldridge, J.; Balakrishnan, G.; Lees, M.; Chen, D. Electronic texture of the thermoelectric oxide Na 0.75 CoO 2. Phys. Rev. Lett. 2008, 100, 096405. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, W.; Hébert, S.; Pelloquin, D.; Pérez, O.; Maignan, A. Enhanced thermoelectric properties in a layered rhodium oxide with a trigonal symmetry. Phys. Rev. B 2007, 76, 245102. [Google Scholar] [CrossRef]
- Limelette, P.; Hardy, V.; Auban-Senzier, P.; Jérome, D.; Flahaut, D.; Hébert, S.; Frésard, R.; Simon, C.; Noudem, J.; Maignan, A. Strongly correlated properties of the thermoelectric cobalt oxide Ca 3 Co 4 O 9. Phys. Rev. B 2005, 71, 233108. [Google Scholar] [CrossRef] [Green Version]
- Terasaki, I.; Tanaka, H.; Satake, A.; Okada, S.; Fujii, T. Out-of-plane thermal conductivity of the layered thermoelectric oxide Bi 2− x Pb x Sr 2 Co 2 O y. Phys. Rev. B 2004, 70, 214106. [Google Scholar] [CrossRef]
- Li, D.; Xia, Y. Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 2004, 16, 1151–1170. [Google Scholar] [CrossRef]
- Yan, X.; Yu, M.; Ramakrishna, S.; Russell, S.J.; Long, Y.-Z. Advances in portable electrospinning devices for in situ delivery of personalized wound care. Nanoscale 2019, 11, 19166–19178. [Google Scholar] [CrossRef]
- Maensiri, S.; Nuansing, W. Thermoelectric oxide NaCo2O4 nanofibers fabricated by electrospinning. Mater. Chem. Phys. 2006, 99, 104–108. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y.; Xia, Y. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett. 2003, 3, 1167–1171. [Google Scholar] [CrossRef]
- Dai, Z.; King, W.; Park, K. A 100 nanometer scale resistive heater–thermometer on a silicon cantilever. Nanotechnology 2009, 20, 095301. [Google Scholar] [CrossRef]
- Lee, J.; Liao, A.; Pop, E.; King, W.P. Electrical and thermal coupling to a single-wall carbon nanotube device using an electrothermal nanoprobe. Nano Lett. 2009, 9, 1356–1361. [Google Scholar] [CrossRef]
- Ma, F.; Ou, Y.; Yang, Y.; Liu, Y.; Xie, S.; Li, J.-F.; Cao, G.; Proksch, R.; Li, J. Nanocrystalline structure and thermoelectric properties of electrospun NaCo2O4 nanofibers. J. Phys. Chem. C 2010, 114, 22038–22043. [Google Scholar] [CrossRef]
- Wu, B.; Guo, Y.; Hou, C.; Zhang, Q.; Li, Y.; Wang, H. High-performance flexible thermoelectric devices based on all-inorganic hybrid films for harvesting low-grade heat. Adv. Funct. Mater. 2019, 29, 1900304. [Google Scholar] [CrossRef]
- Nonoguchi, Y.; Hata, K.; Kawai, T. Dispersion of Synthetic MoS2 Flakes and Their Spontaneous Adsorption on Single-Walled Carbon Nanotubes. ChemPlusChem 2015, 80, 1158. [Google Scholar] [CrossRef]
- Karalis, G.; Tzounis, L.; Lambrou, E.; Gergidis, L.N.; Paipetis, A.S. A carbon fiber thermoelectric generator integrated as a lamina within an 8-ply laminate epoxy composite: Efficient thermal energy harvesting by advanced structural materials. Appl. Energy 2019, 253, 113512. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Lee, W.; Kang, Y.H.; Cho, S.Y.; Jang, K.-S. Wet-spinning and post-treatment of CNT/PEDOT: PSS composites for use in organic fiber-based thermoelectric generators. Carbon 2018, 133, 293–299. [Google Scholar] [CrossRef]
- Wang, L.; Yao, Q.; Xiao, J.; Zeng, K.; Qu, S.; Shi, W.; Wang, Q.; Chen, L. Engineered molecular chain ordering in single-walled carbon nanotubes/polyaniline composite films for high—Performance organic thermoelectric materials. Chem. Asian J. 2016, 11, 1804–1810. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Mo, J.-H.; Kang, Y.H.; Cho, S.Y.; Jang, K.-S. Thermoelectric fibers from well-dispersed carbon nanotube/poly (vinyliedene fluoride) pastes for fiber-based thermoelectric generators. Nanoscale 2018, 10, 19766–19773. [Google Scholar] [CrossRef]
- Lu, Y.; Ding, Y.; Qiu, Y.; Cai, K.; Yao, Q.; Song, H.; Tong, L.; He, J.; Chen, L. Good performance and flexible PEDOT: PSS/Cu2Se nanowire thermoelectric composite films. ACS Appl. Mater. Interfaces 2019, 11, 12819–12829. [Google Scholar] [CrossRef]
- Xu, Q.; Qu, S.; Ming, C.; Qiu, P.; Yao, Q.; Zhu, C.; Wei, T.-R.; He, J.; Shi, X.; Chen, L. Conformal organic–inorganic semiconductor composites for flexible thermoelectrics. Energy Environ. Sci. 2020, 13, 511–518. [Google Scholar] [CrossRef]
- Xu, H.; Guo, Y.; Wu, B.; Hou, C.; Zhang, Q.; Li, Y.; Wang, H. Highly Integrable Thermoelectric Fiber. ACS Appl. Mater. Interfaces 2020, 12, 33297–33304. [Google Scholar] [CrossRef]
- Wang, L.; Yao, Q.; Shi, W.; Qu, S.; Chen, L. Engineering carrier scattering at the interfaces in polyaniline based nanocomposites for high thermoelectric performances. Mater. Chem. Front. 2017, 1, 741–748. [Google Scholar] [CrossRef]
- Meng, Q.; Cai, K.; Du, Y.; Chen, L. Preparation and thermoelectric properties of SWCNT/PEDOT: PSS coated tellurium nanorod composite films. J. Alloys Compd. 2019, 778, 163–169. [Google Scholar] [CrossRef]
- Zeng, X.; Ren, L.; Xie, J.; Mao, D.; Wang, M.; Zeng, X.; Du, G.; Sun, R.; Xu, J.-B.; Wong, C.-P. Room-Temperature Welding of Silver Telluride Nanowires for High-Performance Thermoelectric Film. ACS Appl. Mater. Interfaces 2019, 11, 37892–37900. [Google Scholar] [CrossRef]
- Li, Y.; Buddharaju, K.; Tinh, B.C.; Singh, N.; Lee, S.J. Improved vertical silicon nanowire based thermoelectric power generator with polyimide filling. IEEE Electron Device Lett. 2012, 33, 715–717. [Google Scholar] [CrossRef]
- Morata, A.; Pacios, M.; Gadea, G.; Flox, C.; Cadavid, D.; Cabot, A.; Tarancón, A. Large-area and adaptable electrospun silicon-based thermoelectric nanomaterials with high energy conversion efficiencies. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef]
- Yadav, A.; Pipe, K.; Shtein, M. Fiber-based flexible thermoelectric power generator. J. Power Sources 2008, 175, 909–913. [Google Scholar] [CrossRef]
- Kirihara, K.; Wei, Q.; Mukaida, M.; Ishida, T. Thermoelectric power generation using nonwoven fabric module impregnated with conducting polymer PEDOT: PSS. Synth. Met. 2017, 225, 41–48. [Google Scholar] [CrossRef]
- Piao, M.; Joo, M.-K.; Choi, J.H.; Shin, J.M.; Moon, Y.S.; Kim, G.T.; Dettlaff-Weglikowska, U. Evaluation of power generated by thermoelectric modules comprising a p-type and n-type single walled carbon nanotube composite paper. RSC Adv. 2015, 5, 78099–78103. [Google Scholar] [CrossRef]
- Jin, Q.; Shi, W.; Zhao, Y.; Qiao, J.; Qiu, J.; Sun, C.; Lei, H.; Tai, K.; Jiang, X. Cellulose fiber-based hierarchical porous bismuth telluride for high-performance flexible and tailorable thermoelectrics. ACS Appl. Mater. Interfaces 2018, 10, 1743–1751. [Google Scholar] [CrossRef]
- Kim, S.J.; We, J.H.; Cho, B.J. A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 2014, 7, 1959–1965. [Google Scholar] [CrossRef]
- Shin, S.; Kumar, R.; Roh, J.W.; Ko, D.-S.; Kim, H.-S.; Kim, S.I.; Yin, L.; Schlossberg, S.M.; Cui, S.; You, J.-M. High-performance screen-printed thermoelectric films on fabrics. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-K.; Kim, M.-S.; Lee, S.; Kim, C.; Kim, Y.-J. Wearable thermoelectric generator for harvesting human body heat energy. Smart Mater. Struct. 2014, 23, 105002. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, H.; Mao, C.; Li, C.M. Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body. Appl. Energy 2016, 164, 57–63. [Google Scholar] [CrossRef]
Material | Thermoelectric Properties | Device Performance | Reference | ||||
---|---|---|---|---|---|---|---|
S2σ (μWm−1K−2) | κ(Wm−1K−1) | ZT | Coupled Material | Output Voltage (mV) | Output Power (μW) | ||
Inorganic/Carbon or Inorganic/Organic Hybrid Fiber-based Materials | |||||||
rGO + Bi2Te3 films | 108 | - | 0.0035 | SWCNTs + Sb2Te3 films | 67.5 | 23.6 | [62] |
SWCNT/ MoS2 buckypapers | 52 | 6.8 | 0.0028 | - | - | - | [63] |
Carbon fibers + epoxy | 245 | - | - | - | 19.56 | 0.87 | [64] |
CNTs/ PEDOT:PSS composite fibers | 113 | - | - | treated with hydrazine | 8 | 0.43 | [65] |
SWCNTs/ PANI | 217 | 0.44 | 0.15 | - | 8 | ~4 | [66] |
SWCNTs/ PVDF pastes | ~378 | - | - | doped by PEI | 16 | 0.8 | [67] |
Cu2Se NWs/ PEDOT:PSS | 270.3 | 0.25–0.3 | 0.3 | - | 15 | 0.32 | [68] |
Ta4SiTe4 whiskers + PVDF | 1045.7 | - | - | - | 35 | 1.7 | [69] |
Te NWs + PEDOT:PSS fibers | 78.1 | - | - | coated by Ag | 25.9 | 0.2 | [70] |
Te nanorods + SWCNTs + PANI | 101 | 0.3 | 0.101 | - | 8 | 1 | [71] |
Te nanorods coated by SWCNT/PEDOT:PSS | 104 | - | - | treated with H2SO4 | 5.6 | 0.0536 | [72] |
Semiconductor Fiber-based Materials or Coating on Glass/Silica Fiber | |||||||
Ag2Te NW films | 359.76 | - | - | - | 3.6 | - | [73] |
Bi0.5Sb1.5Te3 fibers | 170–260 | - | - | Bi2Te2.7 Se0.3 fibers | 4.8 | 0.018 | [30] |
Si NWs | - | - | - | - | 27.9 | 0.47 | [74] |
Si nanotube fabrics | - | - | 0.34 | - | 22 | - | [75] |
Bi0.5Sb1.5Te3 core fibers | 3529 | 0.84 | 1.25 | Bi2Se3 core fibers | 97 | - | [32] |
Ni-Ag coated silica fibers | - | - | - | - | 0.9 | 0.002 | [76] |
PbTe nanocrystalcoated glass fibers | 406 | 0.226 | 0.75 | - | - | - | [34] |
Modified Natural or Man-made Fiber/Fabric | |||||||
Cellulose fibers coated by PEDOT:PSS | 1.5 | 0.1 | 0.0013 | Ni foils | 6 | 2.4 | [77] |
Cellulose fibers + SWCNTnetworks | 8.1 | - | - | treated with PEI | ~16.8 | 0.0755 | [78] |
Cellulose fibers + Bi2Te3 | 377.5 | 0.47 | 0.38 | Cellulose fibers + (Bi,Sb)2Te3 | 144 | - | [79] |
Glass fabric printed by Bi2Te3 | 1029.3 | 0.93 | 0.33 | Glass fabric printed by Sb2Te3 | 90 | - | [80] |
Glass fabric screen-printed by Bi2Te2.7Se0.3 | 2077.3 | 0.37 | 0.81 | Glass fabric screen-printed by Bi0.5Sb1.5Te3 | - | - | [81] |
Nylon membrane with Ag2Se films | ~987.4 | 0.478 | 0.6 | - | 18 | 0.46 | [9] |
Polymer fabrics printed by Bi0.5Sb1.5Te3 | - | - | - | Polymer fabricsprinted by Bi2Se0.3Te2.7 | 25 | 0.24 | [82] |
Silk fabric deposited by Sb2Te3 | - | - | - | Silk fabric deposited by Bi2Te3 | ~10 | ~0.015 | [83] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, J.; Basit, A.; Li, S.; Danto, S.; Tjin, S.C.; Wei, L. Inorganic Thermoelectric Fibers: A Review of Materials, Fabrication Methods, and Applications. Sensors 2021, 21, 3437. https://doi.org/10.3390/s21103437
Xin J, Basit A, Li S, Danto S, Tjin SC, Wei L. Inorganic Thermoelectric Fibers: A Review of Materials, Fabrication Methods, and Applications. Sensors. 2021; 21(10):3437. https://doi.org/10.3390/s21103437
Chicago/Turabian StyleXin, Jiwu, Abdul Basit, Sihui Li, Sylvain Danto, Swee Chuan Tjin, and Lei Wei. 2021. "Inorganic Thermoelectric Fibers: A Review of Materials, Fabrication Methods, and Applications" Sensors 21, no. 10: 3437. https://doi.org/10.3390/s21103437