Simultaneous Recognition of Dopamine and Uric Acid in the Presence of Ascorbic Acid via an Intercalated MXene/PPy Nanocomposite
<p>A schematic illustration of the synthesis of the MXene/PPy nanocomposite.</p> "> Figure 2
<p>The synthesis of the MXene/PPy nanocomposite. A FESEM image of (<b>a</b>) Ti<sub>3</sub>AlC<sub>2</sub> powders, (<b>b</b>) Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> powders, (<b>c</b>) Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> nanosheets, and (<b>d</b>) PPy nanowires; (<b>e</b>) a TEM image of the PPy nanowire; (<b>f</b>) a FESEM image of the MXene/PPy nanocomposite.</p> "> Figure 3
<p>(<b>a</b>) The XRD patterns of Ti<sub>3</sub>AlC<sub>2</sub>-MAX, Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-MXene, PPy and MXene/PPy powders; (<b>b</b>) the FT-IR diagram of MXene/PPy powder; (<b>c</b>–<b>f</b>) the XPS spectra of MXene/PPy, Ti 2p, N 1s, and C 1s in the MXene/PPy nanocomposite, respectively.</p> "> Figure 4
<p>(<b>a</b>) Nyquist plots of bare, PPy modified, and MXene/PPy modified electrodes in the presence of 10 mM (Fe(CN)<sub>6</sub>)<sup>3-/4-</sup> containing 0.1 M KCl; (<b>b</b>) the CV curves of the MXene/PPy modified electrode with different scan rates (50, 100, 150, 200, 250, and 300 mV/s) in 10 mM K<sub>3</sub>(Fe(CN)<sub>6</sub>) containing 3 M KCl; (<b>c</b>) the calibration curves of current peak vs. the square root of the scan rate for PPy modified and MXene/PPy modified electrodes; (<b>d</b>) the CV responses of the MXene/PPy modified electrode for 1 mM AA, 50 μM DA, and 100 μM UA in 0.05 M PBS; (<b>e</b>,<b>f</b>) the calibration curves of the current peak vs. the square root of the scan rate for the MXene/PPy modified electrode in 0.05 M PBS containing 50 μM DA and 100 μM UA, respectively (the insert shows the CV curves of the MXene/PPy modified electrode with different scan rates (50, 60, 70, 80, 90, 100, and 110 mV/s)).</p> "> Figure 5
<p>(<b>a</b>) Differential pulse voltammetry (DPV) responses of the MXene/PPy modified electrode with different DA concentrations in the presence of 1 mM AA and 100 μM UA; (<b>b</b>) a linear calibration curve for the current response of DA; (<b>c</b>) DPV responses of the MXene/PPy modified electrode with different UA concentrations in the presence of 1 mM AA and 50 μM DA; (<b>d</b>) a linear calibration curve for the current response of UA.</p> "> Figure 6
<p>(<b>a</b>) DPV responses of the MXene/PPy modified electrode for the mixture containing DA (12.5–125 μM), UA (50–500 μM), and 1 mM AA; (<b>b</b>) the linear calibration curves for the current response of DA and UA; (<b>c</b>) the stability of the as-prepared sensor after scanning in 0.05 M PBS for 20 cycles; (<b>d</b>) the reproducibility of the as-prepared sensor in 0.05 M PBS containing 50 μM DA and 100 μM UA.</p> ">
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Ti3C2Tx Powder
2.3. Synthesis of MXene/PPy Nanomaterial
2.4. Preparation of the MXene/PPy Modified Electrode
2.5. Characterizations and Electrochemical Measurements
3. Results and Discussion
3.1. Characterization of MXene/PPy
3.2. Electrochemical Behaviors of MXene/PPy Modified Electrode
3.3. Sensing Performance of MXene/PPy Modified Electrode
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dral, A.P.; ten Elshof, J.E. 2D metal oxide nanoflakes for sensing applications: Review and perspective. Sens. Actuators B Chem. 2018, 272, 369–392. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Duan, C.; Yang, C.; Shen, W.; Wang, F.; Zhu, Z. A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sens. Actuators B Chem. 2015, 218, 60–66. [Google Scholar] [CrossRef]
- Hantanasirisakul, K.; Gogotsi, Y. Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes). Adv. Mater. 2018, 30, 1804779. [Google Scholar] [CrossRef]
- Shen, J.; Liu, G.; Ji, Y.; Liu, Q.; Cheng, L.; Guan, K.; Zhang, M.; Liu, G.; Xiong, J.; Yang, J.; et al. 2D MXene Nanofilms with Tunable Gas Transport Channels. Adv. Funct. Mater. 2018, 28, 1801511. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, X.; Xin, X.; Tang, Z.R.; Xu, Y.J. Ti3C2T x-Based Three-Dimensional Hydrogel by a Graphene Oxide-Assisted Self-Convergence Process for Enhanced Photoredox Catalysis. ACS Nano 2019, 13, 295–304. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, X.; Zhang, J.; Zhang, H.; Li, Y. Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode. Biosens. Bioelectron. 2019, 130, 315–321. [Google Scholar] [CrossRef]
- Yang, C.; Xu, D.; Peng, W.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X. Ti2C3Tx nanosheets as photothermal agents for near-infrared responsive hydrogels. Nanoscale 2018, 10, 15387–15392. [Google Scholar] [CrossRef]
- Ng, V.M.H.; Huang, H.; Zhou, K.; Lee, P.S.; Que, W.; Xu, J.Z.; Kong, L.B. Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: Synthesis and applications. J. Mater. Chem. A 2017, 5, 3039–3068. [Google Scholar]
- Liu, G.; Shen, J.; Liu, Q.; Liu, G.; Xiong, J.; Yang, J.; Jin, W. Ultrathin two-dimensional MXene membrane for pervaporation desalination. J. Membr. Sci. 2018, 548, 548–558. [Google Scholar] [CrossRef]
- Weng, C.; Xing, T.; Jin, H.; Wang, G.; Dai, Z.; Pei, Y.; Liu, L.; Zhang, Z. Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance. Compos. Part A Appl. Sci. Manuf. 2020, 135, 105927. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, C.; Siqueira, G.; Han, D.; Huch, A.; Abdolhosseinzadeh, S.; Heier, J.; Nuesch, F.; Zhang, C.J.; Nystrom, G. Nanocellulose-MXene Biomimetic Aerogels with Orientation-Tunable Electromagnetic Interference Shielding Performance. Adv. Sci. 2020, 7, 2000979. [Google Scholar] [CrossRef]
- Li, M.; Wang, H.; Wang, X.; Lu, Q.; Li, H.; Zhang, Y.; Yao, S. Ti3C2/Cu2O heterostructure based signal-off photoelectrochemical sensor for high sensitivity detection of glucose. Biosens. Bioelectron. 2019, 142, 111535. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Z.; Wang, Y.; Jiang, Q.; El-Demellawi, J.K.; Kim, H.; Alshareef, H.N. MXene Printing and Patterned Coating for Device Applications. Adv. Mater. 2020, 32, e1908486. [Google Scholar] [CrossRef]
- He, Y.; Ma, L.; Zhou, L.; Liu, G.; Jiang, Y.; Gao, J. Preparation and Application of Bismuth/MXene Nano-Composite as Electrochemical Sensor for Heavy Metal Ions Detection. Nanomaterials 2020, 10, 866. [Google Scholar] [CrossRef] [PubMed]
- Naveen, M.H.; Gurudatt, N.G.; Shim, Y.-B. Applications of conducting polymer composites to electrochemical sensors: A review. Appl. Mater. Today 2017, 9, 419–433. [Google Scholar] [CrossRef]
- Han, J.; Wang, M.; Hu, Y.; Zhou, C.; Guo, R. Conducting polymer-noble metal nanoparticle hybrids: Synthesis mechanism application. Prog. Polymer Sci. 2017, 70, 52–91. [Google Scholar] [CrossRef]
- Naghdi, S.; Rhee, K.; Hui, D.; Park, S. A Review of Conductive Metal Nanomaterials as Conductive, Transparent, and Flexible Coatings, Thin Films, and Conductive Fillers: Different Deposition Methods and Applications. Coatings 2018, 8, 278. [Google Scholar] [CrossRef] [Green Version]
- Mao, H.; Liang, J.; Zhang, H.; Pei, Q.; Liu, D.; Wu, S.; Zhang, Y.; Song, X.M. Poly(ionic liquids) functionalized polypyrrole/graphene oxide nanosheets for electrochemical sensor to detect dopamine in the presence of ascorbic acid. Biosens. Bioelectron. 2015, 70, 289–298. [Google Scholar] [CrossRef]
- Wang, H.Y.L.; Liu, X.; Zeng, R.; Li, M.; Huang, Y.; Hu, X. Constructing Hierarchical Tectorum-like a-Fe2O3/PPy Nanoarrays on Carbon Cloth for Solid-State Asymmetric Supercapacitors. Angew. Chem. Int. Ed. 2016, 56, 1105–1110. [Google Scholar] [CrossRef]
- Lee, J.S.; Shin, D.H.; Kim, W.; Jang, J. Highly ordered, polypyrrole-coated Co(OH)2 architectures for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 6603–6609. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, J.; Wang, Z.; Zhong, L.; Sun, Y.; Liang, Z.; Li, Y.; Jiang, L.; Chen, X.; Chi, L. Programmable Negative Differential Resistance Effects Based on Self-Assembled Au@PPy Core-Shell Nanoparticle Arrays. Adv. Mater. 2018, 30, e1802731. [Google Scholar] [CrossRef]
- Tian, C.; Du, Y.; Xu, P.; Qiang, R.; Wang, Y.; Ding, D.; Xue, J.; Ma, J.; Zhao, H.; Han, X. Constructing Uniform Core-Shell PPy@PANI Composites with Tunable Shell Thickness toward Enhancement in Microwave Absorption. ACS Appl. Mater. Interfaces 2015, 7, 20090–20099. [Google Scholar] [CrossRef]
- Burgoyne, H.A.; Kim, P.; Kolle, M.; Epstein, A.K.; Aizenberg, J. Screening Conditions for Rationally Engineered Electrodeposition of Nanostructures (SCREEN): Electrodeposition and Applications of Polypyrrole Nanofibers using Microfluidic Gradients. Small 2012, 8, 3502–3509. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Pang, J.; You, Q.; Liu, T.; Chu, Z.; Jin, W. Simultaneous biosensing of catechol and hydroquinone via a truncated cube-shaped Au/PBA nanocomposite. Biosens. Bioelectron. 2019, 124–125, 260–267. [Google Scholar] [CrossRef]
- Liu, T.; Zhao, Q.; Xie, Y.; Jiang, D.; Chu, Z.; Jin, W. In situ fabrication of aloe-like Au-ZnO micro/nanoarrays for ultrasensitive biosensing of catechol. Biosens. Bioelectron. 2020, 156, 112145. [Google Scholar] [CrossRef]
- Nam, H.; Kwon, J.E.; Choi, M.-W.; Seo, J.; Shin, S.; Kim, S.; Park, S.Y. Highly Sensitive and Selective Fluorescent Probe for Ascorbic Acid with a Broad Detection Range through Dual-Quenching and Bimodal Action of Nitronyl-Nitroxide. ACS Sens. 2016, 1, 392–398. [Google Scholar] [CrossRef]
- Alipour, E.; Majidi, M.R.; Saadatirad, A.; Golabi, S.M.; Alizadeh, A.M. Simultaneous determination of dopamine and uric acid in biological samples on the pretreated pencil graphite electrode. Electrochim. Acta 2013, 91, 36–42. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, Y.; Zhan, D.; Liu, H.; Zhao, Q.; Kou, Y.; Shao, Y.; Li, M.; Zhuang, Q.; Zhu, Z. Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta 2005, 66, 51–57. [Google Scholar] [CrossRef]
- Yang, L.; Liu, D.; Huang, J.; You, T. Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode. Sens. Actuators B Chem. 2014, 193, 166–172. [Google Scholar] [CrossRef]
- Lin, K.C.; Tsai, T.H.; Chen, S.M. Performing enzyme-free H2O2 biosensor and simultaneous determination for AA, DA, and UA by MWCNT-PEDOT film. Biosens. Bioelectron. 2010, 26, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yu, S.; He, W.; Uyama, H.; Xie, Q.; Zhang, L.; Yang, F. Electrochemical sensor based on carbon-supported NiCoO2 nanoparticles for selective detection of ascorbic acid. Biosens. Bioelectron. 2014, 55, 446–451. [Google Scholar] [CrossRef]
- Mohadesi, A.; Taher, M.A. Electrochemical behavior of Naphthol green B doped in polypyrrole film and its application for electrocatalytic oxidation of ascorbic acid. Sens. Actuators B Chem. 2007, 123, 733–739. [Google Scholar] [CrossRef]
- Wei, Z.; Yang, Y.; Xiao, X.; Zhang, W.; Wang, J. Fabrication of conducting polymer/noble metal nanocomposite modified electrodes for glucose, ascorbic acid and tyrosine detection and its application to identify the marked ages of rice wines. Sens. Actuators B Chem. 2018, 255, 895–906. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, L.; Li, Y.; Wang, D.; Ma, H.; Ren, H.; Shi, Y.; Han, Y.; Ye, B.-C. Electrochemical sensing platform based on the biomass-derived microporous carbons for simultaneous determination of ascorbic acid, dopamine, and uric acid. Biosens. Bioelectron. 2018, 121, 96–103. [Google Scholar] [CrossRef]
- Abellán-Llobregat, A.; Vidal, L.; Rodríguez-Amaro, R.; Berenguer-Murcia, Á.; Canals, A.; Morallón, E. Au-IDA microelectrodes modified with Au-doped graphene oxide for the simultaneous determination of uric acid and ascorbic acid in urine samples. Electrochim. Acta 2017, 227, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Zhao, M.; Cai, B.; Wang, W.; Ye, Z.; Huang, J. 3D graphene foams decorated by CuO nanoflowers for ultrasensitive ascorbic acid detection. Biosens. Bioelectron. 2014, 59, 384–388. [Google Scholar] [CrossRef]
- Yuan, M.M.; Zou, J.; Huang, Z.N.; Peng, D.M.; Yu, J.G. PtNPs-GNPs-MWCNTs-beta-CD nanocomposite modified glassy carbon electrode for sensitive electrochemical detection of folic acid. Anal. Bioanal. Chem. 2020, 412, 2551–2564. [Google Scholar] [CrossRef] [PubMed]
- Gowda, J.I.; Nandibewoor, S.T. Electrochemical behavior of paclitaxel and its determination at glassy carbon electrode. Asian J. Pharm. Sci. 2014, 9, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Chu, Z.; Shi, L.; Peng, J.; Jin, W. Prussian blue nanocubes decorated three-dimensional silver nanowires network for high-performance electrochemical biosensing. Sens. Actuators B Chem. 2015, 221, 1009–1016. [Google Scholar] [CrossRef]
- Du, J.; Yue, R.; Ren, F.; Yao, Z.; Jiang, F.; Yang, P.; Du, Y. Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron. 2014, 53, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.Z.; Su, X.R.; Ferranco, A.; Chen, Z.C.; Han, G.C.; Jiang, Z.L.; Kraatz, H.B. Real-Time Electrochemical Detection of Uric Acid, Dopamine and Ascorbic Acid by Heme Directly Modified Carbon Electrode. J. Biomed. Nanotechnol. 2020, 16, 29–39. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Wang, W.; Du, L.; Dong, F.; Deng, Y.; Zhang, T. Zeolite A functionalized with copper nanoparticles and graphene oxide for simultaneous electrochemical determination of dopamine and ascorbic acid. Anal. Chim. Acta 2012, 739, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Hu, G.; Zheng, M.; Guo, Y.; Cao, J.; Shao, S. A mesoporous carbon nanofiber-modified pyrolytic graphite electrode used for the simultaneous determination of dopamine, uric acid, and ascorbic acid. Carbon 2012, 50, 107–114. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, Y. Glassy carbon electrode modified with poly(dibromofluorescein) for the selective determination of dopamine and uric acid in the presence of ascorbic acid. Microchim. Acta 2012, 178, 123–130. [Google Scholar] [CrossRef]
Electrode Materials | Linear Range (μM) | Detection Limit (μM) | Reference | ||
---|---|---|---|---|---|
DA | UA | DA | UA | ||
PGE | 0.15–15 | 0.3–150 | 0.033 | 0.12 | [27] |
Graphene flowers/CFE | 0.7–45.21 | 3.78–183.87 | 0.5 | 2 | [40] |
Hema/GCE | 5–20 | 2.5–20 | 0.5 | 0.63 | [41] |
CuZEA/RGO/ GCE | 0.1–19 | 20–200 | 0.041 | 11 | [42] |
Mesoporous carbon nanofiber-modified pyrolytic graphite electrode | 0.05–30 | 0.5–120 | 0.02 | 0.2 | [43] |
Poly (DBF) | 0.2–200 | 1.0–250 | 0.2 | 0.03 | [44] |
Reduced graphene oxide/GCE | 0.5–60 | 0.5–60 | 0.5 | 0.5 | [29] |
MXene/PPy | 12.5–125 | 50–500 | 0.37 | 0.15 | Current Work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, Q.; Guo, Z.; Zhang, R.; Chang, Z.; Ge, M.; Mei, Q.; Dong, W.-F. Simultaneous Recognition of Dopamine and Uric Acid in the Presence of Ascorbic Acid via an Intercalated MXene/PPy Nanocomposite. Sensors 2021, 21, 3069. https://doi.org/10.3390/s21093069
You Q, Guo Z, Zhang R, Chang Z, Ge M, Mei Q, Dong W-F. Simultaneous Recognition of Dopamine and Uric Acid in the Presence of Ascorbic Acid via an Intercalated MXene/PPy Nanocomposite. Sensors. 2021; 21(9):3069. https://doi.org/10.3390/s21093069
Chicago/Turabian StyleYou, Qiannan, Zhongyang Guo, Rui Zhang, Zhimin Chang, Mingfeng Ge, Qian Mei, and Wen-Fei Dong. 2021. "Simultaneous Recognition of Dopamine and Uric Acid in the Presence of Ascorbic Acid via an Intercalated MXene/PPy Nanocomposite" Sensors 21, no. 9: 3069. https://doi.org/10.3390/s21093069
APA StyleYou, Q., Guo, Z., Zhang, R., Chang, Z., Ge, M., Mei, Q., & Dong, W.-F. (2021). Simultaneous Recognition of Dopamine and Uric Acid in the Presence of Ascorbic Acid via an Intercalated MXene/PPy Nanocomposite. Sensors, 21(9), 3069. https://doi.org/10.3390/s21093069