Ganoderma boninense Disease Detection by Near-Infrared Spectroscopy Classification: A Review
<p>(<b>a</b>–<b>d</b>) Oil palm infected with <span class="html-italic">G. boninense</span> with (<b>a</b>) rotten bole tissue, (<b>b</b>) basidiomata of <span class="html-italic">G. boninense</span>, (<b>c</b>) foliar symptoms, (<b>d</b>) decaying oil palm bole tissues [<a href="#B20-sensors-21-03052" class="html-bibr">20</a>].</p> "> Figure 2
<p>FTIR spectra of <span class="html-italic">G. boninense</span>, healthy oil palm tissue and infected oil palm tissue [<a href="#B56-sensors-21-03052" class="html-bibr">56</a>].</p> "> Figure 3
<p>Reflectance spectra of healthy (G0) and non-healthy (G1, G2 and G3) leaf samples [<a href="#B46-sensors-21-03052" class="html-bibr">46</a>].</p> "> Figure 4
<p>The electromagnetic spectrum.</p> "> Figure 5
<p>Major analytical bands and relative peak positions for prominent NIR absorptions [<a href="#B68-sensors-21-03052" class="html-bibr">68</a>].</p> "> Figure 6
<p>Main types of machine learning.</p> "> Figure 7
<p>Machine learning model development.</p> "> Figure 8
<p>Proposed method of real-time NIRS <span class="html-italic">G. boninense</span> detection.</p> ">
Abstract
:1. Introduction
2. Spectroscopy Technique for Ganoderma boninense Detection
3. Near-Infrared Spectroscopy
3.1. Theory and Operating Principle
3.2. Advantages of Near-Infrared Spectroscopy
3.3. Disadvantages of Near-Infrared Spectroscopy
4. Application of NIRS for Plant Disease Detection
5. Machine Learning Techniques for Plant Disease Prediction
- k-nearest neighbour (kNN);
- Naïve Bayes (NB);
- Decision tree (DT)—random forest and decision forest;
- Artificial neural network (ANN);
- Support vector machine (SVM).
6. Challenges and Future Prospects
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Department of Statistics Malaysia. Selected Agricultural Indicators. Malaysia; 2019. Available online: https://www.statista.com/map/asia/malaysia/agriculture (accessed on 27 April 2021).
- Malaysian Palm Oil Board. Economics and Industry Development Division: Overview of Industry 2019; MPOB: Bandar Baru Bangi, Malaysia, 2020.
- Flood, J.; Hasan, Y.; Turner, P.D.; O’Grady, E.B. The spread of Ganoderma from infective sources in the field and its implications for management of the disease in oil palm. In Ganoderma Diseases of Perennial Crops; CABI: Egham, UK, 2000; pp. 101–112. [Google Scholar]
- Naher, L.; Yusuf, U.K.; Ismail, A.; Tan, S.G.; Mondal, M.M.A. Ecological status of’Ganoderma’and basal stem rot disease of oil palms (’Elaeis guineensis’ Jacq.). Aust. J. Crop Sci. 2013, 7, 1723. [Google Scholar]
- Singh, G. Ganoderma-the scourge of oil palms [Elaeis guineensis] in the coastal areas [Peninsular Malaysia]. Planter (Malaysia) 1991, 67, 421–444. [Google Scholar]
- Susanto, A. Basal stem rot in Indonesia. Biology, economic importance, epidemiology, detection and control. In Proceedings of the International Workshop on Awareness, Detection and Control of Oil Palm Devastating Diseases. Kuala Lumpur Convention Centre, Kuala Lumpur, Malaysia, 6 November 2009; Universiti Putra Malaysia Press: Serdang, Malaysia, 2009. [Google Scholar]
- Miller, R.N.G. The Characterization of Ganoderma Populations in Oil Palm Cropping Systems; University of Reading: Reading, UK, 1995. [Google Scholar]
- Paterson, R. Internal amplification controls have not been employed in fungal PCR hence potential false negative results. J. Appl. Microbiol. 2007, 102, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horbach, R.; Navarro-Quesada, A.R.; Knogge, W.; Deising, H.B. When and how to kill a plant cell: Infection strategies of plant pathogenic fungi. J. Plant Physiol. 2011, 168, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Walton, J.D. Deconstructing the Cell Wall. Plant Physiol. 1994, 104, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
- Nusaibah, S.; Akmar, A.S.N.; Idris, A.; Sariah, M.; Pauzi, Z.M. Involvement of metabolites in early defense mechanism of oil palm (Elaeis guineensis Jacq.) against Ganoderma disease. Plant Physiol. Biochem. 2016, 109, 156–165. [Google Scholar] [CrossRef]
- Ho, C.-L.; Tan, Y.-C. Molecular defense response of oil palm to Ganoderma infection. Phytochemistry 2015, 114, 168–177. [Google Scholar] [CrossRef]
- Pusztahelyi, T.; Holb, I.J.; Pã³CsiI, I. Secondary metabolites in fungus-plant interactions. Front. Plant Sci. 2015, 5, 573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahuja, I.; Kissen, R.; Bones, A.M. Phytoalexins in defense against pathogens. Trends Plant Sci. 2012, 17, 73–90. [Google Scholar] [CrossRef]
- Iriti, M.; Faoro, F. Chemical Diversity and Defence Metabolism: How Plants Cope with Pathogens and Ozone Pollution. Int. J. Mol. Sci. 2009, 10, 3371–3399. [Google Scholar] [CrossRef] [Green Version]
- Kandan, A.; Bhaskaran, R.; Samiyappan, R. Ganoderma—A basal stem rot disease of coconut palm in south Asia and Asia pacific regions. Arch. Phytopathol. Plant Prot. 2010, 43, 1445–1449. [Google Scholar] [CrossRef]
- Corley, V.R.H.; Tinker, P.B. The Oil Palm; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Balick, M.J.; Turner, P.D. Oil Palm Diseases and Disorders. Brittonia 1982, 34, 364. [Google Scholar] [CrossRef]
- Turner, D.P.; Gillbanks, R.A. Oil Palm Cultivation and Management; Incorporated Society of Planters: Kuala Lumpur, Malaysia, 1974. [Google Scholar]
- Chong, K.P.; Dayou, J.; Alexander, A. Pathogenic Nature of Ganoderma boninense and Basal Stem Rot Disease. In Detection and Control of Ganoderma boninense in Oil Palm Crop; Springer: Berlin/Heidelberg, Germany, 2017; pp. 5–12. [Google Scholar]
- Ariffin, D.; Idris, A.S. Progress and Research on Ganoderma Basal Stem Rot of Oil Palm; (No. L-0562); MPOB: Bandar Baru Bangi, Malaysia, 2002.
- Hushiarian, R.; Yusof, N.A.; Dutse, S.W. Detection and control of Ganoderma boninense: Strategies and perspectives. SpringerPlus 2013, 2, 555. [Google Scholar] [CrossRef] [Green Version]
- Parker, S.R.; Shaw, M.W.; Royle, D.J. The reliability of visual estimates of disease severity on cereal leaves. Plant Pathol. 1995, 44, 856–864. [Google Scholar] [CrossRef]
- Wong, L.C.; Bong, C.F.J.; Idris, A.S. Ganoderma Species Associated with Basal Stem Rot Disease of Oil Palm. Am. J. Appl. Sci. 2012, 9, 879–885. [Google Scholar] [CrossRef] [Green Version]
- Asma, M.; Noreddine, K.C.; Laid, D.; Asma, A.K.; Mounira, K.A.; Philippe, T.; Milet, A.; Chaouche, N.K.; Dehimat, L.; Kaki, A.A.; et al. Flow cytometry approach for studying the interaction between Bacillus mojavensis and Alternaria alternata. Afr. J. Biotechnol. 2016, 15, 1417–1428. [Google Scholar] [CrossRef] [Green Version]
- Milner, H.; Ji, P.; Sabula, M.; Wu, T. Quantitative polymerase chain reaction (Q-PCR) and fluorescent in situ hybridization (FISH) detection of soilborne pathogen Sclerotium rolfsii. Appl. Soil Ecol. 2019, 136, 86–92. [Google Scholar] [CrossRef]
- Hu, Z.; Chang, X.; Dai, T.; Li, L.; Liu, P.; Wang, G.; Liu, P.; Huang, Z.; Liu, X. Metabolic Profiling to Identify the Latent Infection of Strawberry by Botrytis cinerea. Evol. Bioinform. 2019, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachika, N.A.; Hashima, N.; Wayayoka, A.; Mana, H.C.; Alia, M.M. Optical imaging techniques for rice diseases detection: A review. J. Agric. Food Eng. 2020, 2, 1. [Google Scholar]
- Webster, C.G.; Turechek, W.W.; Li, W.; Kousik, C.S.; Adkins, S. Development and Evaluation of ELISA and qRT-PCR for Identification of Squash vein yellowing virus in Cucurbits. Plant Dis. 2017, 101, 178–185. [Google Scholar] [CrossRef]
- Migliorini, D.; Ghelardini, L.; Luchi, N.; Capretti, P.; Onorari, M.; Santini, A. Temporal patterns of airborne Phytophthora spp. in a woody plant nursery area detected using real-time PCR. Aerobiologia 2018, 35, 201–214. [Google Scholar] [CrossRef]
- Suharti, W.S.; Nose, A.; Zheng, S.-H. Metabolite profiling of sheath blight disease resistance in rice: In the case of positive ion mode analysis by CE/TOF-MS. Plant Prod. Sci. 2016, 19, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Khaled, A.Y.; Aziz, S.A.; Bejo, S.K.; Nawi, N.M.; Abu Seman, I.; Onwude, D.I. Early detection of diseases in plant tissue using spectroscopy—Applications and limitations. Appl. Spectrosc. Rev. 2017, 53, 36–64. [Google Scholar] [CrossRef]
- Zeng, H.; Zhang, D.; Zhai, X.; Wang, S.; Liu, Q. Enhancing the immunofluorescent sensitivity for detection of Acidovorax citrulli using fluorescein isothiocyanate labeled antigen and antibody. Anal. Bioanal. Chem. 2017, 410, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, K.; Uszczyńska-Ratajczak, B.; Majewska, A.; Borodynko-Filas, N. DNA microarray-based detection and identification of bacterial and viral pathogens of maize. J. Plant Dis. Prot. 2017, 124, 577–583. [Google Scholar] [CrossRef]
- Darmono, T.W. Detection of basal stem rot disease of oil palm using polyclonal antibody. Menara Perkeb. 1999, 67, 32–39. [Google Scholar]
- Ananthanarayanan, V.T.; Reddy, M.K. Serological test for the diagnosis of Ganoderma lucidum. Curr. Sci. 1984, 53, 97–98. [Google Scholar]
- Ariffin, D.; Idris, S.; Khairudin, H. Conformation of ganoderma infected palm by drilling technique. In PORIM International Palm Oil Congress (No. L-0314); PORIM: Kuala Lumpur, Malaysia, 1995. [Google Scholar]
- Idris, A.S.; Rajinder, S.; Madihah, A.Z.; Wahid, M.B. Multiplex PCR-DNA kit for early detection and identification of Ganoderma species in oil palm. In MPOB Information Series TS; MPOB: Bandar Baru Bangi, Malaysia, 2010; Volume 531. [Google Scholar]
- Idris, A.S.; Mazliham, M.S.; Loonis, P.; Wahid, M.B. GanoSken for early detection of Ganoderma infection in oil palm. In MPOB Information Series TT; MPOB: Bandar Baru Bangi, Malaysia, 2010; Volume 442. [Google Scholar]
- Dutse, S.W.; Yusof, N.A.; Ahmad, H.; Hussein, M.Z.; Zainal, Z. An electrochemical DNA biosensor for ganoderma boninense pathogen of the Oil palm utilizing a New ruthenium complex, [Ru (dppz) 2 (qtpy)]Cl2. Int. J. Electrochem. Sci. 2012, 7, 8105–8115. [Google Scholar]
- Tan, J.Y.; Ker, P.J.; Lau, K.Y.; Hannan, M.A.; Tang, S.G.H.; Yeong, T.J.; Jern, K.P.; Yao, L.K.; Hoon, S.T.G. Applications of Photonics in Agriculture Sector: A Review. Molecules 2019, 24, 2025. [Google Scholar] [CrossRef] [Green Version]
- López, M.M.; Bertolini, E.; Olmos, A.; Caruso, P.; Gorris, M.T.; Llop, P.; Penyalver, R.; Cambra, M. Innovative tools for detection of plant pathogenic viruses and bacteria. Int. Microbiol. 2003, 6, 233–243. [Google Scholar] [CrossRef]
- Ray, M.; Ray, A.; Dash, S.; Mishra, A.; Achary, K.G.; Nayak, S.; Singh, S. Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors. Biosens. Bioelectron. 2017, 87, 708–723. [Google Scholar] [CrossRef]
- García-Sánchez, F.; Galvez-Sola, L.; Martínez-Nicolás, J.J.; Muelas-Domingo, R.; Nieves, M. Using Near-Infrared Spectroscopy in Agricultural Systems. Dev. Near-Infrared Spectrosc. 2017. [Google Scholar] [CrossRef] [Green Version]
- Blanco, M.; Villarroya, I. NIR spectroscopy: A rapid-response analytical tool. Trac Trends Anal. Chem. 2002, 21, 240–250. [Google Scholar] [CrossRef]
- Liaghat, S.; Ehsani, R.; Mansor, S.; Shafri, H.Z.; Meon, S.; Sankaran, S.; Azam, S.H. Early detection of basal stem rot disease (Ganoderma) in oil palms based on hyperspectral reflectance data using pattern recognition algorithms. Int. J. Remote Sens. 2014, 35, 3427–3439. [Google Scholar] [CrossRef]
- Wu, D.; Feng, L.; Zhang, C.; He, Y. Early Detection of Botrytis cinerea on Eggplant Leaves Based on Visible and Near-Infrared Spectroscopy. Trans. Asabe 2008, 51, 1133–1139. [Google Scholar] [CrossRef]
- Manley, M. Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials. Chem. Soc. Rev. 2014, 43, 8200–8214. [Google Scholar] [CrossRef] [Green Version]
- De Beer, T.; Burggraeve, A.; Fonteyne, M.; Saerens, L.; Remon, J.; Vervaet, C. Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes. Int. J. Pharm. 2011, 417, 32–47. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y. Comparison and Combination of Near-Infrared and Raman Spectra for PLS and NAS Quantitation of Glucose, Urea and Lactate; ProQuest LLC.: Ann Arbor, MI, USA, 2013. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Huck, C.W. Near-Infrared Spectroscopy in Bio-Applications. Molecules 2020, 25, 2948. [Google Scholar] [CrossRef]
- Isha, A.; Yusof, N.A.; Shaari, K.; Osman, R.; Abdullah, S.N.A.; Wong, M.-Y. Metabolites identification of oil palm roots infected with Ganoderma boninense using GC–MS-based metabolomics. Arab. J. Chem. 2020, 13, 6191–6200. [Google Scholar] [CrossRef]
- Isha, A.; Akanbi, F.S.; Yusof, N.A.; Osman, R.; Mui-Yun, W.; Abdullah, S.N.A. An NMR Metabolomics Approach and Detection of Ganoderma boninense-Infected Oil Palm Leaves Using MWCNT-Based Electrochemical Sensor. J. Nanomater. 2019, 2019, 4729706. [Google Scholar] [CrossRef] [Green Version]
- Khaled, A.Y.; Aziz, S.A.; Bejo, S.K.; Nawi, N.M.; Abu Seman, I. Spectral features selection and classification of oil palm leaves infected by Basal stem rot (BSR) disease using dielectric spectroscopy. Comput. Electron. Agric. 2018, 144, 297–309. [Google Scholar] [CrossRef]
- Khaled, A.Y.; Aziz, S.A.; Bejo, S.K.; Nawi, N.M.; Abu Seman, I.; Izzuddin, M.A. Development of classification models for basal stem rot (BSR) disease in oil palm using dielectric spectroscopy. Ind. Crop. Prod. 2018, 124, 99–107. [Google Scholar] [CrossRef]
- Dayou, J.; Alexander, A.; Sipaut, C.S.; Phin, C.K.; Chin, L.P. On the possibility of using FTIR for detection of Ganoderma boninense in infected oil palm tree. Int. J. Adv. Agric. Environ. Eng. 2014, 1, 161–163. [Google Scholar]
- Alexander, A. Sensitivity analysis of the detection of Ganoderma boninense infection in oil palm using FTIR. Trans. Sci. Technol. 2014, 1, 1–5. [Google Scholar]
- Abdullah, A.H.; Shakaff, A.Y.M.; Adom, A.H.; Ahmad, M.N.; Zakaria, A.; Ghani, S.A.; Samsudin, N.M.; Saad, F.S.A.; Kamarudin, L.M.; Hamid, N.H.; et al. P2.1.7 Exploring MIP Sensor of Basal Stem Rot (BSR) Disease in Palm Oil Plantation. In Proceedings of the Proceedings IMCS 2012, Nuremberg, Germany, 20–23 May 2012; pp. 1348–1351. [Google Scholar]
- Liaghat, S.; Mansor, S.; Ehsani, R.; Shafri, H.Z.M.; Meon, S.; Sankaran, S. Mid-infrared spectroscopy for early detection of basal stem rot disease in oil palm. Comput. Electron. Agric. 2014, 101, 48–54. [Google Scholar] [CrossRef]
- Shafri, H.Z.M.; Anuar, M.I.; Seman, I.A.; Noor, N.M. Spectral discrimination of healthy and Ganoderma-infected oil palms from hyperspectral data. Int. J. Remote Sens. 2011, 32, 7111–7129. [Google Scholar] [CrossRef]
- Ahmadi, P.; Muharam, F.M.; Ahmad, K.; Mansor, S.; Abu Seman, I. Early Detection of Ganoderma Basal Stem Rot of Oil Palms Using Artificial Neural Network Spectral Analysis. Plant Dis. 2017, 101, 1009–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deshmukh, K.; Sankaran, S.; Ahamed, B.; Sadasivuni, K.K.; Pasha, K.S.; Ponnamma, D.; Sreekanth, P.R.; Chidambaram, K. Dielectric spectroscopy, in Spectroscopic Methods for Nanomaterials Characterization; Elsevier: Amsterdam, The Netherlands, 2017; pp. 237–299. [Google Scholar] [CrossRef]
- Brandl, H. Detection of fungal infection in Lolium perenne by Fourier transform infrared spectroscopy. J. Plant Ecol. 2012, 6, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Arnnyitte, A.; Jedol, D.; Coswald, S.S.; Phin, C.; Chin, L. Some interpretations on FTIR results for the detection of Ganoderma boninense in oil palm tissue. Adv. Environ. Biol. 2014, 8, 30–32. [Google Scholar]
- Lelong, C.C.D.; Roger, J.-M.; Brégand, S.; Dubertret, F.; Lanore, M.; Sitorus, N.A.; Raharjo, D.A.; Caliman, J.-P. Evaluation of Oil-Palm Fungal Disease Infestation with Canopy Hyperspectral Reflectance Data. Sensors 2010, 10, 734–747. [Google Scholar] [CrossRef] [PubMed]
- Knipling, E.B. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sens. Environ. 1970, 1, 155–159. [Google Scholar] [CrossRef]
- Liang, P.-S.; Slaughter, D.C.; Ortega-Beltran, A.; Michailides, T.J. Detection of fungal infection in almond kernels using near-infrared reflectance spectroscopy. Biosyst. Eng. 2015, 137, 64–72. [Google Scholar] [CrossRef]
- A Guide to Near-Infrared Spectroscopic Analysis of Industrial Manufacturing Processes; British Grassland Society: Herisau, Switzerland, 2002.
- Murray, I. Forage analysis by near infrared spectroscopy. In Sward Measurement Handbook; British Grassland Society: Kenilworth, UK, 1993; pp. 285–312. [Google Scholar]
- Gurrapu, S.; Soucek, M. Innovate in Industrial and Optical Sensing Applications Using Award-Winning DLP® Technology; Texas Instruments: Dallas, TX, USA, 2015; Available online: https://training.ti.com/innovate-new-and-exciting-optical-sensing-applications-industrial-markets-dlp-technology (accessed on 27 April 2021).
- Givens, D.I.; De Boever, J.L.; Deaville, E.R. The principles, practices and some future applications of near infrared spectroscopy for predicting the nutritive value of foods for animals and humans. Nutr. Res. Rev. 1997, 10, 83–114. [Google Scholar] [CrossRef] [PubMed]
- Kuda-Malwathumullage, C.P. Applications of Near-Infrared Spectroscopy in Temperature Modeling of Aqueous-Based Samples and Polymer Characterization; University of Iowa: Iowa, IA, USA, 2013. [Google Scholar]
- Vranic, B.Z. Design of Experiments Methodology in Studying Near-Infrared Spectral Information of Model Intact Tablets, in Simultaneous Determination of Metoprolol Tartrate and Hydrochlorothiazide in Solid Dosage Forms and Powder Compressibility Assessment Using Near-Infrared Spectroscopy; University of Basel: Basel, Switzerland, 2015. [Google Scholar]
- Davies, A.M.C. An introduction to near infrared (NIR) spectroscopy. J. Near Infrared Spectrosc. 2014. Available online: https://www.impopen.com/introduction-near-infrared-nir-spectroscopy (accessed on 24 June 2020).
- Deaville, E.R.; Flinn, P.C. Near-infrared (NIR) spectroscopy: An alternative approach for the estimation of forage quality and voluntary intake. Forage Eval. Rumin. Nutr. 2009, 301–320. [Google Scholar] [CrossRef]
- Gislum, R.; Micklander, E.; Nielsen, J. Quantification of nitrogen concentration in perennial ryegrass and red fescue using near-infrared reflectance spectroscopy (NIRS) and chemometrics. Field Crop. Res. 2004, 88, 269–277. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Zheng, L.; Zhao, Y.; Pei, X. Soil nitrogen content forecasting based on real-time NIR spectroscopy. Comput. Electron. Agric. 2016, 124, 29–36. [Google Scholar] [CrossRef]
- Omar, A.F.; Atan, H.; MatJafri, M.Z. Peak Response Identification through Near-Infrared Spectroscopy Analysis on Aqueous Sucrose, Glucose, and Fructose Solution. Spectrosc. Lett. 2012, 45, 190–201. [Google Scholar] [CrossRef]
- Haq, Q.M.; Mabood, F.; Naureen, Z.; Al-Harrasi, A.; Gilani, S.A.; Hussain, J.; Jabeen, F.; Khan, A.; Al-Sabari, R.S.; Al-Khanbashi, F.H.; et al. Application of reflectance spectroscopies (FTIR-ATR & FT-NIR) coupled with multivariate methods for robust in vivo detection of begomovirus infection in papaya leaves. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 198, 27–32. [Google Scholar] [CrossRef]
- Lim, J.; Kim, G.; Mo, C.; Oh, K.; Yoo, H.; Ham, H.; Kim, M.S. Classification of Fusarium-Infected Korean Hulled Barley Using Near-Infrared Reflectance Spectroscopy and Partial Least Squares Discriminant Analysis. Sensors 2017, 17, 2258. [Google Scholar] [CrossRef] [Green Version]
- Soto-Barajas, M.C.; Zabalgogeazcoa, I.; González-Martin, I.; Vázquez-De-Aldana, B.R. Qualitative and quantitative analysis of endophyte alkaloids in perennial ryegrass using near-infrared spectroscopy. J. Sci. Food Agric. 2017, 97, 5028–5036. [Google Scholar] [CrossRef]
- Ruth, K.U.; Makeswari, T.; Pauline, S. NIR spectroscopy to detect nutrients and disease in plant. Int. J. Pure Appl. Math. 2018, 119, 733–740. [Google Scholar]
- Xu, G.; Yuan, H.; Lu, W. Development of modern near infrared spectroscopic techniques and its applications. Guang Pu Xue Yu Guang Pu Fen Xi Guang Pu 2000, 20, 134–142. [Google Scholar]
- Chu, X.-L.; Lu, W.-Z. Research and application progress of near infrared spectroscopy analytical technology in China in the past five years. Guang Pu Xue Yu Guang Pu Fen Xi Guang Pu 2014, 34, 2595–2605. [Google Scholar] [PubMed]
- Bart, J.C.; Gucciardi, E.; Cavallaro, S. Quality assurance of biolubricants. Biolubricants 2013, 396–450. [Google Scholar] [CrossRef]
- Roberts, J.J.; Power, A.; Chapman, J.; Chandra, S.; Cozzolino, D. Vibrational Spectroscopy Methods for Agro-Food Product Analysis. Adv. Ion Mobil. Mass Spectrom. Fundam. Instrum. Appl. 2018, 80, 51–68. [Google Scholar] [CrossRef]
- Wang, L.; Hu, Q.; Pei, F.; Mugambi, M.A.; Yang, W. Detection and identification of fungal growth on freeze-dried Agaricus bisporus using spectrum and olfactory sensor. J. Sci. Food Agric. 2020, 100, 3136–3146. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.-S.; Haff, R.P.; Hua, S.-S.T.; Munyaneza, J.E.; Mustafa, T.; Sarreal, S.B.L. Nondestructive detection of zebra chip disease in potatoes using near-infrared spectroscopy. Biosyst. Eng. 2018, 166, 161–169. [Google Scholar] [CrossRef]
- Zhao, Y.; Gu, Y.; Qin, F.; Li, X.; Ma, Z.; Zhao, L.; Li, J.; Cheng, P.; Pan, Y.; Wang, H. Application of Near-Infrared Spectroscopy to Quantitatively Determine Relative Content of Puccnia striiformis f. sp. tritici DNA in Wheat Leaves in Incubation Period. J. Spectrosc. 2017, 2017, 9740295. [Google Scholar] [CrossRef]
- Kafle, G.K.; Khot, L.R.; Jarolmasjed, S.; Yongsheng, S.; Lewis, K. Robustness of near infrared spectroscopy based spectral features for non-destructive bitter pit detection in honeycrisp apples. Postharvest Biol. Technol. 2016, 120, 188–192. [Google Scholar] [CrossRef] [Green Version]
- Wongsheree, T.; Jitareerat, R.R.P.; Wongs-Aree, C.; Phiasai, T. Near Infrared Spectroscopic Analysis for Latent Infection of Colletrotrichum gloeosporioides, a Causal Agent of Anthracnose Disease in Mature-Green Mango Fruit. In Proceedings of the nternational Conference for a Sustainable GreaterMekong Subregion, Bangkok, Thailand, 26–27 August 2010. [Google Scholar]
- Saranwong, S.; Thanapase, W.; Haff, R.; Kawano, S. Detection of Fruit Fly Eggs and Larvae in Intact Mango by near Infrared Spectroscopy and Imaging. Nir News 2013, 24, 6–8. [Google Scholar] [CrossRef]
- Pearson, T.C.; Wicklow, D.T. Detection of corn kernels infected by fungi. Trans. ASABE 2006, 49, 1235–1245. [Google Scholar] [CrossRef] [Green Version]
- Draganova, T.; Daskalov, P.; Tsonev, R. An approach for identifying of Fusarium infected maize grains by spectral analysis in the visible and near infrared region, SIMCA models, parametric and neural classifiers. Int. J. Bioautom. 2010, 14, 119–128. [Google Scholar]
- Tallada, J.G.; Wicklow, D.T.; Pearson, T.C.; Armstrong, P.R. Detection of Fungus-Infected Corn Kernels Using Near-Infrared Reflectance Spectroscopy and Color Imaging. Trans. ASABE 2011, 54, 1151–1158. [Google Scholar] [CrossRef]
- Moscetti, R.; Monarca, D.; Cecchini, M.; Haff, R.P.; Contini, M.; Massantini, R. Detection of Mold-Damaged Chestnuts by Near-Infrared Spectroscopy. Postharvest Biol. Technol. 2014, 93, 83–90. [Google Scholar] [CrossRef]
- Xu, H.; Ying, Y.; Fu, X.; Zhu, S. Near-infrared Spectroscopy in detecting Leaf Miner Damage on Tomato Leaf. Biosyst. Eng. 2007, 96, 447–454. [Google Scholar] [CrossRef]
- Purcell, D.E.; O’Shea, M.G.; Johnson, R.A.; Kokot, S. Near-Infrared Spectroscopy for the Prediction of Disease Ratings for Fiji Leaf Gall in Sugarcane Clones. Appl. Spectrosc. 2009, 63, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Fuguo, J.; Chenghai, L.; Jingkun, S.; Xianzhe, Z. Rapid detection of Aflatoxin B1 in paddy rice as analytical quality assessment by near infrared spectroscopy. Int. J. Agric. Biol. Eng. 2014, 7, 127–133. [Google Scholar]
- Hernández-Hierro, J.; García-Villanova, R.; González-Martín, I. Potential of near infrared spectroscopy for the analysis of mycotoxins applied to naturally contaminated red paprika found in the Spanish market. Anal. Chim. Acta 2008, 622, 189–194. [Google Scholar] [CrossRef]
- Singh, A.; Ganapathysubramanian, B.; Singh, A.K.; Sarkar, S. Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 2016, 21, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, N.; Shah, K.; Karn, D.; Dalal, J. Prediction of Student’s Performance Using Machine Learning. Ssrn Electron. J. 2019. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazquez, F.; Sánchez, J.; Pla, F. On the Use of Labelled and Unlabelled Data to Improve Nearest Neighbor Classification. Intel. Artif. 2006, 10, 53–62. [Google Scholar] [CrossRef]
- Ramya, R.; Kumar, P.; Mugilan, D.; Babykala, M. A Review of Different Classification Techniques in Machine Learning using Weka for Plant Disease Detection. Int. Res. J. Eng. Technol. (IRJET) 2018, 5, 3818–3823. [Google Scholar]
- Nagabhushana, S. Computer Vision and Image Processing; New Age International: New Delhi, India, 2005. [Google Scholar]
- Kotsiantis, B.S.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 2007, 160, 3–24. [Google Scholar]
- Bhavsar, H.; Ganatra, A. A comparative study of training algorithms for supervised machine learning. Int. J. Soft Comput. Eng. 2012, 2, 2231–2307. [Google Scholar]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Mitchell, T. Machine Learning; McGraw-Hill Higher Education: New York, NY, USA, 1997. [Google Scholar]
- Wu, X.; Kumar, V.; Quinlan, J.R.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, S.-K.; Liu, B.; Yu, P.S.; et al. Top 10 algorithms in data mining. Knowl. Inf. Syst. 2007, 14, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Solanki, U.; Jaliya, U.K.; Thakore, D.G. A Survey on Detection of Disease and Fruit Grading. Int. J. Innov. Emerg. Res. Eng. 2015, 2, 109–114. [Google Scholar]
- Kamruzzaman, S.M. Text classification using artificial intelligence. ArXiv 2010, arXiv:1009.4964. [Google Scholar]
- Langley, P.; Iba, W.; Thompson, K. An analysis of Bayesian classifiers. In Proceedings of the Tenth National Conference on Artificial Intelligence, San Jose, CA, USA, 12–16 July 1992. [Google Scholar]
- Jadhav, D.S.; Channe, H.P. Comparative study of K-NN, naive Bayes and decision tree classification techniques. Int. J. Sci. Res. 2016, 5, 1842–1845. [Google Scholar]
- Thakur, R.; Mehta, P. Bayesian Classifier Based Advanced Fruits Disease. Int. J. Eng. Dev. Res. 2017, 5, 1237–1241. [Google Scholar]
- Suresha, M.; Kumar, K.S.S.; Kumar, G.S. Texture features and decision trees based vegetables classification. Int. J. Comput. Appl. 2012, 975, 8878. [Google Scholar]
- Bandi, R.S.; Varadharajan, A.; Chinnasamy, A. Performance evaluation of various statistical classifiers in detecting the diseased citrus leaves. Int. J. Eng. Sci. Technol. 2013, 5, 298–307. [Google Scholar]
- Sankaran, S.; Ehsani, R.; Inch, S.A.; Ploetz, R.C. Evaluation of Visible-Near Infrared Reflectance Spectra of Avocado Leaves as a Non-destructive Sensing Tool for Detection of Laurel Wilt. Plant Dis. 2012, 96, 1683–1689. [Google Scholar] [CrossRef]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press, Inc.: Oxfordshire, UK, 1995. [Google Scholar]
- Rosenblatt, F. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Am. J. Psychol. 1963, 76, 705. [Google Scholar] [CrossRef] [Green Version]
- Gunn, S.R. Support Vector Machine for Classification and Regression; University of Southampton: Southampton, UK, 2005. [Google Scholar]
- Sabeh, S.N. Intelligent Computer Vision System Featuring Support Vector Machine with Wilk’s Analysis and Unimodal Thresholding. Ph.D. Thesis, Universiti Sains Malaysia, Penang, Malaysia, 2012. [Google Scholar]
- Ramli, D.A. Development of Multibiometric Speaker Identification Systems with Support Vector Machine Audio Reliability Estimation. Ph.D. Thesis, Universiti Kebangsaan Malaysia, Bangi, Malaysia, 2010. [Google Scholar]
- Padol, P.B.; Yadav, A.A. SVM classifier based grape leaf disease detection. In Proceedings of the 2016 Conference on Advances in Signal Processing (CASP), Institute of Electrical and Electronics Engineers (IEEE), Pune, India, 9–11 June 2016; pp. 175–179. [Google Scholar]
- Rumpf, T.; Mahlein, A.-K.; Steiner, U.; Oerke, E.-C.; Dehne, H.-W.; Plümer, L. Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance. Comput. Electron. Agric. 2010, 74, 91–99. [Google Scholar] [CrossRef]
- Tomar, D.; Agarwal, S. A survey on Data Mining approaches for Healthcare. Int. J. Bio-Sci. Bio-Technol. 2013, 5, 241–266. [Google Scholar] [CrossRef]
- Griffin, K.M.; Burke, H.H.K. Compensation of hyperspectral data for atmospheric effects. Linc. Lab. J. 2003, 14, 29–54. [Google Scholar]
Disease Detection in Plants | ||||
---|---|---|---|---|
Physical Inspection | Serological Methods | Molecular Methods | Biomarker-Based Sensors | Remote Sensing |
Visually, based on external symptoms [24] | Flow cytometry [25] | Fluorescence in situ hybridisation (FISH) [26] | Gaseous metabolite profiling [27] | Imaging techniques [28] |
Enzyme-linked immunosorbent assay (ELISA) [29] | Polymerase chain reaction (PCR) [30] | Plant metabolite profiling [31] | Spectroscopy techniques [32] | |
Immunofluorescence [33] | DNA arrays [34] |
Spectroscopy Method | Instrument | Sample Grouping | Models/Algorithms | Significant Result | References |
---|---|---|---|---|---|
Dielectric spectroscopy | Solid dielectric test fixture + impedance analyser | Healthy Mild Moderate Severe | SVM, ANN | Overall classification accuracies of the impedance values are more than 80% | [54] |
Healthy Mild Moderate Severe | LDA, QDA, kNN and NB | Mean classification accuracy: LDA: 80.34% QDA: 80.79% kNN: 77.85% NB: 79.98% Impedance value overall accuracy: 95.45% | [55] | ||
Mass spectroscopy | GC-MS | Healthy Infected | PCA | The metabolite variation of healthy and infected oil palm root is identified | [52] |
NMR spectroscopy | NMR spectrometer | Healthy Infected | PCA | The metabolite variation of healthy and infected oil palm leaves is identified | [53] |
FTIR spectroscopy | FTIR spectrometer | Ganoderma basidiomata | - | CH3, CN and C-O-C functional groups are identified in the G. boninense basidiomata tissue. | [58] |
FTIR spectroscopy | FTIR spectrometer | Healthy Infected | - | Resemblance pattern of infected oil palm with pure G. boninense is observed at a particular wavelength which can be used as biomarker | [56] |
G. boninense contents as low as 5% were detected | [57] | ||||
N-H, C=N, C=H and C-O-C functional groups are identified in the G. boninense infected oil palm tissue | [64] | ||||
MIR spectroscopy | FTIR Spectrometer | Healthy Mild Moderate Severe | LDA, QDA, kNN and NB | The highest overall classification performance using LDA: 92% accuracy | [59] |
VIS-NIR spectroscopy | Spectroradiometer | Healthy Mild Severe | Maximum likelihood | 82% classification accuracy | [60] |
VIS-NIR spectroscopy | Spectroradiometer | Healthy Mild Moderate Severe | ANN | Up to 100% classification accuracy without any pre-processing methods | [61] |
VIS-NIR spectroscopy | Spectroradiometer | Healthy Mild Moderate Severe | LDA, QDA, kNN and NB | kNN has the highest classification performance: 97.3% accuracy Significant differences between each severity levels are observed in NIR region compared to VIS region | [46] |
VIS-NIR spectroscopy | Spectroradiometer | Healthy Mild Moderate Severe | PLS-DA | Almost 94% classification accuracy | [65] |
Functional Group | Found in |
---|---|
Hydroxyl (OH) | Water/Moisture, Carbohydrates, Sugars, Alcohols, Glycols |
Amino (NH2) | Proteins, Polymers, Dyes, Pharmaceuticals |
Alkyl/Aryl (C-H) Aliphatic and Aromatic Hydrocarbons | Fats/Lipids, Fuels, Plastics, Polymers |
IR Spectroscopy Region | Accuracy Range for Detection of Plant Disease |
---|---|
VIS-NIR | 66–90% |
NIR | 90–96% |
MIR | 79–92% |
Plant | Disease | Instrument | Wavelength (nm) | Models/Algorithms | Significant Result | Ref |
---|---|---|---|---|---|---|
Agaricus bisporus | Fungal contamination | FT-NIR spectrometer | 833–2500 | PLS-DA | Fungal species: 99% classification accuracy Storage period: 99.2% classification accuracy | [87] |
Papaya | Begomovirus infection | NIR spectrophotometer | 1000–2500 | PLS-DA | Calibration: R2 = 0.964 Validation: R2 = 0.957 | [79] |
Potato | Zebra chip disease | NIR spectrophotometer | 900–2600 | Canonical DA | Raw spectra: 98.35% classification accuracy 2nd derivative spectra: 97.25% classification accuracy | [88] |
Wheat | Stripe rust | FT-NIR spectrometer | 833–2500 | QPLS, SVR, QPLS+SVR | R2 > 0.5 for all models | [89] |
Honeycrisp apple | Bitter pit | Spectroradiometer | 800–2500 | QDA, SVM | QDA: 73–96% classification accuracy SVM: 69–89% classification accuracy | [90] |
Mango | Anthracnose disease | FT-NIR spectrometer | 900–2500 | PLS-DA | 89% classification accuracy | [91] |
Mango | Fruit fly eggs and larval infestation | NIRGun and the Bran + Luebbe InfraAlyzer 500 | 700–950 1100–2500 | PLS-DA | 700–950 Infested fruit: SD = 0.27 Control fruit: SD = 0.19 1100–2500 Infested fruit: SD = 0.26 Control fruit: SD = 0.28 | [92] |
Maize | Fungal infection | NIR spectrometer | 500–1700 | kNN | Healthy kernels: 98.1% classification accuracy Infected kernels: 96.6% classification accuracy | [93] |
Maize | Fusarium infection | NIR spectrophotometer | 400–2500 | SIMCA, PNN, k-means | PNN has the best performance Healthy grain: 99.3% classification accuracy Infected grain: 98.7% classification accuracy | [94] |
Maize | Fungal infection | NIR spectrometer | 904–1685 | LDA, MLP neural networks | Uninfected control kernels: 89% classification accuracy Infected kernels: 79% classification accuracy | [95] |
Chestnut | Fungal infection | NIR analyser | 1100–2300 | LDA, QDA, kNN | The highest overall classification using QDA: 97% accuracy | [96] |
Barley | Fusarium infection | NIR spectrometer | 1175–2170 | PLS-DA | Up to 100% classification accuracy | [80] |
Almond | Fungal infection | VIS-NIR spectrophotometer | 800–2500 | Canonical DA | Cross-validation error rate = 0.26% False negative error = 0 | [67] |
Tomato | Leaf miner infestation | FT-NIR spectrometer | 800–2500 | Regression analysis | R2 = 0.982 | [97] |
Sugarcane | Fiji leaf gall | NIR spectrometer | 909–2500 | PLS | SEV = 0.98 (R2 = 0.97) SEP =1.20 (R2 = 0.88) | [98] |
Rice | Aflatoxin B1 contamination | FT-NIR spectrometer | 1000–2500 | PLS | Correlation, R = 0.850, SEP = 3.211% | [99] |
Red paprika | Aflatoxin B1 and ochratoxin A contamination | NIR spectrophotometer | 1100–2000 | MPLS | AFB1: R2 = 0.95 OTA: R2 = 0.85 Total aflatoxins: R2 = 0.93 | [100] |
Classifier | Advantages | Disadvantages |
---|---|---|
kNN | Simple implementation Classes do not have to be linearly separable | Sensitive to noisy or irrelevant data Testing procedure is time-consuming because of calculation of distance to all known instances |
NB | Only a small amount of training data is required Has better speed | It cannot learn interactions between different features because dependency exists among variables |
Decision tree | Easy to interpret for small trees Accuracy is comparable to other classification techniques for many simple datasets | Decision tree has been observed to overfit for some datasets with noisy classification tasks Restricted to one output attribute Complex decision tree for numeric datasets |
ANN | Robust and user friendly and can handle noisy data Well suited to analysing complex problems | Scalability problem Requires large number of training samples Requires more processing time |
SVM | Effective and robust to noise Highly accurate Can handle many features | Not suitable for large datasets Speed is slow and requires more time to process |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Hilmi Tan, M.I.S.; Jamlos, M.F.; Omar, A.F.; Dzaharudin, F.; Chalermwisutkul, S.; Akkaraekthalin, P. Ganoderma boninense Disease Detection by Near-Infrared Spectroscopy Classification: A Review. Sensors 2021, 21, 3052. https://doi.org/10.3390/s21093052
Mohd Hilmi Tan MIS, Jamlos MF, Omar AF, Dzaharudin F, Chalermwisutkul S, Akkaraekthalin P. Ganoderma boninense Disease Detection by Near-Infrared Spectroscopy Classification: A Review. Sensors. 2021; 21(9):3052. https://doi.org/10.3390/s21093052
Chicago/Turabian StyleMohd Hilmi Tan, Mas Ira Syafila, Mohd Faizal Jamlos, Ahmad Fairuz Omar, Fatimah Dzaharudin, Suramate Chalermwisutkul, and Prayoot Akkaraekthalin. 2021. "Ganoderma boninense Disease Detection by Near-Infrared Spectroscopy Classification: A Review" Sensors 21, no. 9: 3052. https://doi.org/10.3390/s21093052