Leptospira interrogans Outer Membrane Protein-Based Nanohybrid Sensor for the Diagnosis of Leptospirosis
<p>Characterization of the DNA sensor fabrication steps using a Fourier-transform infrared spectroscopy (FTIR) analysis of (<b>A</b>) the AuN/CNF bare electrode and (<b>B</b>) after modifications of the AuN/CNF electrode surface with a single stranded DNA (ssDNA) probe (AuN/CNF/ssDNA<sub>probe</sub>) at a frequency scan of 500–3500 cm<sup>−1</sup>.</p> "> Figure 2
<p>Raman spectrum of (<b>A</b>) the bare AuN/CNF electrode and (<b>B</b>) 5′amino-linked ssDNA probe-modified AuN/CNF electrode (AuN/CNF/ssDNA<sub>(probe)</sub>).</p> "> Figure 3
<p>Voltammetric analysis of the developed DNA sensor in different phases of the fabrication, including (A) the AuN/CNF electrode (bare), (B) AuN/CNF/ssDNA (probe), and (C–O) hybridization with single-stranded GDNA of <span class="html-italic">Leptospira interrogans</span>. The insert (<b>I</b>) shows a linear curve for the calculation of the limit of detection (LOD) and (<b>II</b>) shows a hyperbolic curve plotted between the relative peak current <span class="html-italic">Ip</span> with respect to probe with different concentrations of hybridizing ssGDNA of <span class="html-italic">L. interrogans</span>.</p> "> Figure 4
<p>Comparison of the electrochemical impedance spectra of the DNA chip fabrication steps, including (a) the immobilization of the 5′amino-linked DNA probe and (b–h) hybridization with various concentrations of ssDNA of <span class="html-italic">L. interrogans</span> using 1-mM Potassium ferricyanide solution.</p> "> Figure 5
<p>Cyclic voltametric analysis of DNA sensor selectivity using cDNA (complementary DNA) and a sequence with different numbers of mismatched bases. The insert shows the relative peak current values % <span class="html-italic">Ip</span> (with respect to the probe) of the DNA sensor with cDNA and different numbers of mismatched bases.</p> "> Figure 6
<p>Evaluation of the DNA sensor specificity with <span class="html-italic">L. interrogans</span> and other bacterial species (<span class="html-italic">Escherichia coli, Staphylococcus aureus</span>, and <span class="html-italic">Klebsiella pneumoniae</span>) using cyclic voltametric studies (NC= Negative Control). The insert shows the relative <span class="html-italic">Ip</span> values (with respect to the probe) of the DNA sensor with the hybridizing GDNA of <span class="html-italic">L. interrogans</span> and other bacteria.</p> "> Scheme 1
<p>Illustration of steps involved in the construction of the DNA sensor. AuN: Gold Nanoparticles, CNF: Carbon Nanofiber, SPE: Screen-Printed Electrode, MPA: 3-Mercaptopropionic acid, CV: Cyclic Voltammetry, EIS: Electrochemical Impedance Spectroscopy, EDC: 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide, and NHS: N-Hydroxysuccinimide.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipment
2.3. Isolation of Genomic DNA
2.4. Fabrication of the AuN/CNFs DNA Sensor
2.5. Selectivity of the Sensor
3. Results and Discussion
3.1. Characterization Study
3.2. Electrochemical Analysis
3.3. Selectivity of the Sensor
3.4. Specificity Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Levett, P.N.; Morey, R.E.; Galloway, R.L.; Turner, D.E.; Steigerwalt, A.G.; Mayer, L.W. Detection of pathogenic leptospires by real-time quantitative PCR. J. Med. Microbiol. 2005, 54, 45–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, H.; Nozha, C.; Hakim, K.; Abdelaziz, F.; Rekia, B. Leptospira: Morphology, classification and pathogenesis. J. Bacteriol. Parasitol. 2011, 2, 120–123. [Google Scholar] [CrossRef]
- Ooteman, M.C.; Vago, A.R.; Koury, M.C. Evaluation of MAT, IgM ELISA and PCR methods for the diagnosis of human leptospirosis. J. Microbiol. Methods 2006, 65, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Yupiana, Y.; Vallee, E.; Wilson, P.; Collins-Emerson, J.; Weston, J.; Benschop, J.; Heuer, C. Emerging Leptospira strain poses public health risk for dairy farmers in New Zealand. Prev. Vet. Med. 2019, 170, 104727. [Google Scholar] [CrossRef]
- Waggoner, J.J.; Soda, E.A.; Seibert, R.; Grant, P.; Pinsky, B.A. Molecular detection of Leptospira in two returned travelers: Higher bacterial load in cerebrospinal fluid versus serum or plasma. Am. J. Trop. Med. Hyg. 2015, 93, 238–240. [Google Scholar] [CrossRef] [Green Version]
- Techawiwattanaboon, T.; Patarakul, K. Update on molecular diagnosis of human leptospirosis. Asian Biomed. 2020, 13, 207–216. [Google Scholar] [CrossRef]
- Woods, K.; Nic-Fhogartaigh, C.; Arnold, C.; Boutthasavong, L.; Phuklia, W.; Lim, C.; Chanthongthip, A.; Tulsiani, S.M.; Craig, S.B.; Burns, M.A.; et al. A comparison of two molecular methods for diagnosing leptospirosis from three different sample types in patients presenting with fever in Laos. Clin. Microbiol. Infect. 2018, 24, 1017-e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, M.; Amran, F.; Aqilla, N. Evaluation of a rapid kit for detection of IgM against Leptospira in human. Can. J. Infect. Dis. Med. Microbiol. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Najian, A.N.; Syafirah, E.E.N.; Ismail, N.; Mohamed, M.; Yean, C.Y. Development of multiplex loop mediated isothermal amplification (m-LAMP) label-based gold nanoparticles lateral flow dipstick biosensor for detection of pathogenic Leptospira. Anal. Chim. Acta 2016, 903, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Esteves, L.M.; Bulhões, S.M.; Branco, C.C.; Carreira, T.; Vieira, M.L.; Gomes-Solecki, M.; Mota-Vieira, L. Diagnosis of human leptospirosis in a clinical setting: Real-time PCR high resolution melting analysis for detection of Leptospira at the onset of disease. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Haake, D.A.; Levett, P.N. Leptospirosis in humans. Curr. Top. Microbiol. Immunol. 2015, 387, 65–97. [Google Scholar] [PubMed] [Green Version]
- Ristow, P.; Bourhy, P.; da Cruz McBride, F.W.; Figueira, C.P.; Huerre, M.; Ave, P.; Saint Girons, I.; Ko, A.I.; Picardeau, M. The OmpA-like protein Loa22 is essential for leptospiral virulence. PLoS Pathog. 2007, 3, e97. [Google Scholar] [CrossRef]
- Justino, C.I.; Rocha-Santos, T.A.; Duarte, A.C. Advances in point-of-care technologies with biosensors based on carbon nanotubes. Trends. Anal. Chem. 2013, 45, 24–36. [Google Scholar] [CrossRef]
- Wang, D.S.; Fan, S.K. Microfluidic surface plasmon resonance sensors: From principles to point-of-care applications. Sensors 2016, 16, 1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thevenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Pure Appl. Chem. 1999, 71, 2333–2348. [Google Scholar] [CrossRef] [Green Version]
- Kala, D.; Sharma, T.K.; Gupta, S.; Nagraik, R.; Verma, V.; Thakur, A.; Kaushal, A. AuNPs/CNF-modified DNA biosensor for early and quick detection of O. tsutsugamushi in patients suffering from scrub typhus. 3 Biotech 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kaushal, A.; Gautam, H.; Gupta, S.; Kumar, A. Ultrasensitive nanohybrid DNA sensor for detection of pathogen to prevent damage of heart valves. Sens. Actuator B Chem. 2017, 246, 300–304. [Google Scholar] [CrossRef]
- Kaushal, A.; Singh, S.; Kumar, A.; Kumar, D. Nano-Au/cMWCNT modified speB gene specific amperometric sensor for rapidly detecting Streptococcus pyogenes causing rheumatic heart disease. Indian J. Microbiol. 2017, 57, 121–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Kaushal, A.; Khare, S.; Kumar, A. DNA chip based sensor for amperometric detection of infectious pathogens. Int. J. Biol. Macromol. 2017, 103, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Goyal, M.; Kala, D.; Gupta, S.; Kumar, D.; Kaushal, A. Recent advances in the diagnosis of leptospirosis. Front. Biosci. 2020, 25, 1655–1681. [Google Scholar]
- Kala, D.; Gupta, S.; Nagraik, R.; Verma, V.; Thakur, A.; Kaushal, A. Diagnosis of scrub typhus: Recent advancements and challenges. 3 Biotech 2020, 10, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Zhang, L.; Soeller, C.; Travas-Sejdic, J. Conducting polymers for electrochemical DNA sensing. Biomaterials 2009, 30, 2132–2148. [Google Scholar] [CrossRef]
- Nagraik, R.; Kaushal, A.; Gupta, S.; Dhar, P.; Sethi, S.; Kumar, D. Optimized DNA-based bioassay for Leptospira interrogans detection: A novel platform for leptospirosis diagnosis. 3 Biotech 2019, 9, 284. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P. Prospects of nanobiomaterials for biosensing. Int. J. Electrochem. Sci. 2011. [Google Scholar] [CrossRef] [Green Version]
- Pereira, J.C.; Chaves, R.; Bastos, E.; Leitão, A.; Guedes-Pinto, H. An efficient method for genomic DNA extraction from different molluscs species. Int. J. Mol. Sci. 2011, 12, 8086–8095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dash, S.K.; Sharma, M.; Khare, S.; Kumar, A. Omp85genosensor for detection of human brain bacterial meningitis. Biotechnol. Lett. 2013, 35, 929–935. [Google Scholar] [CrossRef]
- Nagraik, R.; Kaushal, A.; Gupta, S.; Sethi, S.; Sharma, A.; Kumar, D. Nanofabricated versatile electrochemical sensor for Leptospira interrogans detection. J. Biosci. Bioeng. 2020, 129, 441–446. [Google Scholar] [CrossRef]
- Jampasa, S.; Lae-ngee, P.; Patarakul, K.; Ngamrojanavanich, N.; Chailapakul, O.; Rodthongkum, N. Electrochemical immunosensor based on gold-labeled monoclonal anti-LipL32 for leptospirosis diagnosis. Biosens. Bioelectron. 2019, 142, 111539. [Google Scholar] [CrossRef]
DNA Sample | Mismatch Base Sequences |
---|---|
DNA Probe (AmC6) | 5′TCCCGAACAAGCAGAAGGTG3′ |
cDNA | 5′CACCTTCTGCTTGTTCGGGA3′ |
1 BMM | 5′TACCTTCTGCTTGTTCGGGA3′ |
2 BMM | 5′TGCCTTCTGCTTGTTCGGGA3′ |
3 BMM | 5′TGACTTCTGCTTGTTCGGGA3′ |
MBMM | 5′TGAGTTATACTTGGGTGGTC3′ |
SN | Type of Sensor | Biomarker | Nanomaterials | Sensitivity | LOD/ * LOQ | Linearity | Ref. |
---|---|---|---|---|---|---|---|
1 | Amperometric DNA sensor | LipL32 gene | AuN/cMWCNT | 264.5 μA/cm2/ng | 0.015 ng/6 μL | ND | [23] |
2 | Electrochemical immunosensor | rLipL32 protein | SPGE | ND | 0.28 ng/mL * 0.93 ng/mL | 1 to 100 ng/mL | [28] |
3 | Amperometric DNA sensor | LipL32 gene | AuN/cMWCNT | ND | ND | 0.37 to 12 ng/μL | [27] |
4 | Amperometric DNA sensor | Loa22 gene | AuN/CNF | 5431.74 μA/cm2/ng | 0.0077 ng/μL | 0.016 to 67.5 ng/µL | PM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, V.; Kala, D.; Gupta, S.; Kumar, H.; Kaushal, A.; Kuča, K.; Cruz-Martins, N.; Kumar, D. Leptospira interrogans Outer Membrane Protein-Based Nanohybrid Sensor for the Diagnosis of Leptospirosis. Sensors 2021, 21, 2552. https://doi.org/10.3390/s21072552
Verma V, Kala D, Gupta S, Kumar H, Kaushal A, Kuča K, Cruz-Martins N, Kumar D. Leptospira interrogans Outer Membrane Protein-Based Nanohybrid Sensor for the Diagnosis of Leptospirosis. Sensors. 2021; 21(7):2552. https://doi.org/10.3390/s21072552
Chicago/Turabian StyleVerma, Vivek, Deepak Kala, Shagun Gupta, Harsh Kumar, Ankur Kaushal, Kamil Kuča, Natália Cruz-Martins, and Dinesh Kumar. 2021. "Leptospira interrogans Outer Membrane Protein-Based Nanohybrid Sensor for the Diagnosis of Leptospirosis" Sensors 21, no. 7: 2552. https://doi.org/10.3390/s21072552