Development of Broadband High-Frequency Piezoelectric Micromachined Ultrasonic Transducer Array
<p>Schematic of backed piezoelectric micromachined ultrasonic transducers (B-PMUTs). (<b>a</b>) The designed structure of a single element. (<b>b</b>) Three-dimensional (3D) schematic of the array.</p> "> Figure 2
<p>(<b>a</b>–<b>i</b>) The fabrication process of the B-PMUTs.</p> "> Figure 3
<p>Microscopy pictures of B-PMUTs. (<b>a</b>) Top view of a part of 16 × 8 PMUTs arrays. (<b>b</b>) Cross-sectional SEM image of a typical element without PDMS backing. (<b>c</b>) Cross-sectional SEM image of the element with PDMS filling.</p> "> Figure 4
<p>Laser Doppler vibrometer (LDV) setup for characterizing the PMUT performance.</p> "> Figure 5
<p>The first resonance mode of the devices working under water load for (<b>a</b>) a control group without PDMS backing (C-PMUT) and (<b>b</b>) B-PMUT.</p> "> Figure 6
<p>Peak displacement at the center of a B-PDMS element tested in air with a 10 ns 30 V pulse. The insert figure shows the detailed response from 2.9 to 4 µs.</p> "> Figure 7
<p>Vibration response of (<b>a</b>) C-PMUT and (<b>b</b>) B-PMUT, tested in water with a 10 ns 30 V pulse. The time-domain response is shown with a red solid line, and the frequency-domain response is shown with a blue dash line.</p> "> Figure 8
<p>Comparison of working frequency, pitch, and bandwidth of different types of PMUTs under fluid load. The values in the label are the bandwidths (from references) normalized to our study. The hollow square represent the results in the published literature, and the solid star represents the results given in this study.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Fabrication
2.2. Experimental Setup
3. Results and Discussion
3.1. Steady-State Response
3.2. Attenuation of PDMS Backing
3.3. Impulse Response
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davidsen, R.E.; Smith, S.W. Two-dimensional arrays for medical ultrasound using multilayer flexible circuit interconnection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1998, 45, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Heidari, A.; Shelton, S.; Guedes, A.; Horsley, D.A. High frequency piezoelectric micromachined ultrasonic transducer array for intravascular ultrasound imaging. In Proceedings of the 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, USA, 26–30 January 2014; pp. 745–748. [Google Scholar]
- Hajati, A.; Latev, D.; Gardner, D. 3D MEMS piezoelectric ultrasound transducer technology. In Proceedings of the 2013 Joint IEEE International Symposium on Applications of Ferroelectric and Workshop on Piezoresponse Force Microscopy (ISAF/PFM), Prague, Czech Republic, 21–25 July 2013; pp. 231–235. [Google Scholar]
- Jiang, X.; Lu, Y.; Tang, H.-Y.; Tsai, J.M.; Ng, E.J.; Daneman, M.J.; Boser, B.E.; Horsley, D.A. Monolithic ultrasound fingerprint sensor. Microsyst. Nanoeng. 2017, 3, 17059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Zhu, W.; Tan, O.K.; Chao, C.; Zhu, H.; Miao, J. Ultrasound radiating performances of piezoelectric micromachined ultrasonic transmitter. Appl. Phys. Lett. 2005, 86, 033508. [Google Scholar] [CrossRef]
- Qiu, Y.; Gigliotti, J.V.; Wallace, M.; Griggio, F.; DeMore, C.E.M.; Cochran, S.; Trolier-McKinstry, S. Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing, Actuation and Imaging. Sensors 2015, 15, 8020–8041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eovino, B.E.; Akhbari, S.; Lin, L. Broadband ring-shaped PMUTS based on an acoustically induced resonance. In Proceedings of the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 22–26 January 2017; pp. 1184–1187. [Google Scholar]
- Lu, Y.; Rozen, O.; Tang, H.-Y.; Smith, G.L.; Fung, S.; Boser, B.E.; Polcawich, R.G.; Horsley, D.A. Broadband piezoelectric micromachined ultrasonic transducers based on dual resonance modes. In Proceedings of the 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, 18–22 January 2015; pp. 146–149. [Google Scholar]
- Wang, T.; Kobayashi, T.; Lee, C. Micromachined piezoelectric ultrasonic transducer with ultra-wide frequency bandwidth. Appl. Phys. Lett. 2015, 106, 054004. [Google Scholar] [CrossRef]
- Hajati, A.; Latev, D.; Gardner, D.; Hajati, A.; Imai, D.; Torrey, M.; Schoeppler, M. Three-dimensional micro electromechanical system piezoelectric ultrasound transducer. Appl. Phys. Lett. 2012, 101, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Nistorica, C.; Latev, D.; Gardner, D.; Imai, D.; Daft, C. Characterization of a 3D-MEMS piezoelectric transducer for portable imaging systems. In Proceedings of the 2015 IEEE International Ultrasonics Symposium (IUS), Taipei, Taiwan, 21–24 October 2015; pp. 1–4. [Google Scholar]
- Nistorica, C.; Latev, D.; Sano, T.; Xu, L.; Imai, D. High Frequency Piezoelectric Micromachined Transducers with Wide Bandwidth and High Sensitivity. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 1088–1091. [Google Scholar]
- Kuscer, D.; Bustillo, J.; Bakarič, T.; Drnovšek, S.; Lethiecq, M.; Levassort, F. Acoustic Properties of Porous Lead Zirconate Titanate Backing for Ultrasonic Transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 1656–1666. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Riaud, A.; Zhou, J. Smearing Observation of Picoliter Droplets Pinning on Bio-Inspired Negative Lotus Leaf Replicas. IEEE Trans. Nanotechnol. 2020, 19, 102–106. [Google Scholar] [CrossRef]
- Durmuş, H.O.; Karaböce, B.; Çetin, E.; Özdingiş, M.; Toprak, E.; Topşar, S.Ş.; Balcı, Ş. Investigation of the Effect of Tungsten Used in Backing Materials of Ultrasound Probes on Acoustical Parameters. In Proceedings of the 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Istanbul, Turkey, 26–28 June 2019; pp. 1–6. [Google Scholar]
- Wang, X.-B.; He, L.-M.; Liu, W.-J.; Song, S.-R.; Xu, W.-J.; Cheng, Q.; Riaud, A.; Ren, J.-Y.; Zhou, J. Development of PZT-based 18 MHz 2D pMUT array with PDMS waveguide. In Proceedings of the 2020 IEEE International Ultrasonics Symposium (IUS), Las Vegas, NV, USA, 7–11 September 2020; pp. 1–4. [Google Scholar]
- Jung, J.; Annapureddy, V.; Hwang, G.-T.; Song, Y.; Lee, W.; Kang, W.; Ryu, J.; Choi, H. 31-mode piezoelectric micromachined ultrasonic transducer with PZT thick film by granule spraying in vacuum process. Appl. Phys. Lett. 2017, 110, 212903. [Google Scholar] [CrossRef]
- Lu, Y.; Tang, H.; Wang, Q.; Fung, S.; Tsai, J.M.; Daneman, M.; Boser, B.E.; Horsley, D.A. Waveguide piezoelectric micromachined ultrasonic transducer array for short-range pulse-echo imaging. Appl. Phys. Lett. 2015, 106, 193506. [Google Scholar] [CrossRef]
- Xu, G.; Ni, Z.; Chen, X.; Tu, J.; Zhang, D. Acoustic Characterization of Polydimethylsiloxane for Microscale Acoustofluidics. Phys. Rev. Appl. 2020, 13, 054069. [Google Scholar] [CrossRef]
- Huang, W.; Chang, W.-Y.; Kim, J.; Li, S.; Huang, S.; Jiang, X. A Novel Laser Ultrasound Transducer Using Candle Soot Carbon Nanoparticles. IEEE Trans. Nanotechnol. 2016, 15, 395–401. [Google Scholar] [CrossRef]
- Lu, Y.; Tang, H.; Fung, S.; Wang, Q.; Tsai, J.M.; Daneman, M.J.; E Boser, B.; A Horsley, D. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics. Appl. Phys. Lett. 2015, 106, 263503. [Google Scholar] [CrossRef] [Green Version]
- Schmerr, L.W. Fundamentals of Ultrasonic Phased Arrays. Micromech. Mater. Appl. 2015, 215, 73–98. [Google Scholar]
Name | Value (µm) | Name | Value (µm) |
---|---|---|---|
Electrode diameter | 28 | Cavity diameter | 40 |
PZT diameter | 32 | Cavity depth (d1) | 300 |
PZT thickness | 1 | PDMS thickness (d1 + d2) | 330 |
Diaphragm thickness | 4.7 | Pitch | 75 |
Device | Displacement (nm) | Ringdown Time (ns) | Center Frequency (MHz) | Bandwidth (@−3 dB) | ||||
---|---|---|---|---|---|---|---|---|
Air | Water | Air | Water | Air | Water | Air | Water | |
C-PMUT | 38.9 | 36.9 | 1710 | 160 | 20.2 | 16.5 | 6% | 32% |
B-PMUT | 33.2 | 31.8 | 182 | 62 | 19.4 | 15.6 | 22% | 63% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.-B.; He, L.-M.; Ma, Y.-C.; Liu, W.-J.; Xu, W.-J.; Ren, J.-Y.; Riaud, A.; Zhou, J. Development of Broadband High-Frequency Piezoelectric Micromachined Ultrasonic Transducer Array. Sensors 2021, 21, 1823. https://doi.org/10.3390/s21051823
Wang X-B, He L-M, Ma Y-C, Liu W-J, Xu W-J, Ren J-Y, Riaud A, Zhou J. Development of Broadband High-Frequency Piezoelectric Micromachined Ultrasonic Transducer Array. Sensors. 2021; 21(5):1823. https://doi.org/10.3390/s21051823
Chicago/Turabian StyleWang, Xu-Bo, Le-Ming He, You-Cao Ma, Wen-Juan Liu, Wei-Jiang Xu, Jun-Yan Ren, Antoine Riaud, and Jia Zhou. 2021. "Development of Broadband High-Frequency Piezoelectric Micromachined Ultrasonic Transducer Array" Sensors 21, no. 5: 1823. https://doi.org/10.3390/s21051823