Internal Cylinder Identification Based on Different Transmission of Longitudinal and Shear Ultrasonic Waves
<p>Schematic diagram of Fizeau fiber interferometer and its working principle.</p> "> Figure 2
<p>Schematic diagram of experimental setup. The inset also shows the relative position of the fiber and the pulse laser on the sample.</p> "> Figure 3
<p>Aluminum plate samples with the different holes on one side. (<b>a</b>) Two holes with 1.5 mm and 2.0 mm diameters. (<b>b</b>) Scanning area and path. (<b>c</b>) Aluminum plate with the hole and scanning area.</p> "> Figure 4
<p>Fiber end face of the Fizeau fiber interferometer (<b>a</b>), and the interferometer (<b>b</b>) and ultrasonic transducer (<b>c</b>) detection.</p> "> Figure 5
<p>Detected time and frequency domain ultrasonic signals: Fizeau fiber interferometer signals without (<b>a</b>) and with (<b>b</b>) defects, as well as their frequency spectra (<b>c</b>) and the low-pass filtered signals (<b>d</b>). Signals (<b>e</b>) and their frequency spectra (<b>f</b>) detected by the ultrasonic transducers.</p> "> Figure 6
<p>B scan image along the horizontal direction in the non-defect (<b>a</b>) and defective (<b>b</b>) regions. The scanning route is also depicted by the bold blue line in each insect. To compare the attenuation of P waves and S waves, the signal amplitudes are both normalized by their own P wave intensities.</p> "> Figure 7
<p><span class="html-italic">K</span> (<b>a</b>) and <span class="html-italic">L</span> (<b>b</b>) parameters for the scanning signals along the <span class="html-italic">x</span>-axis and the C scan images of two samples with 2 mm (<b>c</b>) and 1.5 mm (<b>d</b>) diameter cylinders, where the yellow is for <span class="html-italic">L</span> = 1 and the blue is for <span class="html-italic">L</span> = −1.</p> ">
Abstract
:1. Introduction
2. Laser Ultrasonic Detection
2.1. Fizeau Fiber Interferometer
2.2. Experimental Processes
3. Transmission of Longitudinal and Shear Waves
4. Visualization of Internal Cylinders
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Monchalin, J.-P. Optical detection of ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1986, 33, 485–499. [Google Scholar] [CrossRef] [PubMed]
- Blitz, J.; Simpson, G. Ultrasonic Methods of Non-Destructive Testing; Chapman & Hall: London, UK, 1996. [Google Scholar]
- Arias, I.; Achenbach, J.D. A model for the ultrasonic detection of surface-breaking cracks by the scanning laser source technique. Wave Motion 2004, 39, 61–75. [Google Scholar] [CrossRef] [Green Version]
- Drinkwater, B.W.; Wilcox, P.D. Ultrasonic arrays for non-destructive evaluation: A review. NDT Int. 2006, 39, 525–541. [Google Scholar] [CrossRef]
- Pelivanov, I.; Shtokolov, A.; Wei, C.-W.; O’Donnell, M. A 1 kHz A-Scan Rate Pump-Probe Laser- Ultrasound System for Robust Inspection of Composites. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 1696–1703. [Google Scholar] [CrossRef] [PubMed]
- Lee, F.W.; Chai, H.K.; Lim, K.S. Assessment of Reinforced Concrete Surface Breaking Crack Using Rayleigh Wave Measurement. Sensors 2016, 16, 337. [Google Scholar] [CrossRef] [Green Version]
- Hong, X.; Lin, X.; Yang, B.; Li, M. Crack detection in plastic pipe using piezoelectric transducers based on nonlinear ultrasonic modulation. Smart Mater. Struct. 2017, 26, 104012. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Zeng, K.; He, X.; Zhang, L. Ultrasonic C-scan imaging and analysis of the mechanical properties of resistance spot-welded joints of stainless steel. Nondestruct. Test. Eval. 2017, 32, 242–254. [Google Scholar] [CrossRef]
- Edwards, R.S.; Dixon, S.; Jian, X. Depth gauging of defects using low frequency wideband Rayleigh waves. Ultrasonics 2006, 44, 93–98. [Google Scholar] [CrossRef]
- Campman, X.; van Wijk, K.; Riyanti, C.D.; Scales, J.; Herman, G. Imaging scattered seismic surface waves. Near Surf. Geophys. 2004, 2, 223–230. [Google Scholar] [CrossRef]
- Campman, X. Imaging and Suppressing Near-Receiver Scattered Seismic Waves. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 31 May 2005. [Google Scholar]
- Campman, X. Marine seismic acquisition: What’s next? In Proceedings of the New Advances in Marine Geophysical Acquisition Technologies, Abu Dhabi, UAE, 7–9 May 2018. [Google Scholar]
- Tanaka, T.; Izawa, Y. Nondestructive Detection of Small Internal Defects in Carbon Steel by Laser Ultrasonics. Jpn. J. Appl. Phys. 2001, 40, 1477–1481. [Google Scholar] [CrossRef]
- Sun, K.; Shen, Z.; Shi, Y.; Xu, Z.; Yuan, L.; Ni, X. Non-destructive Detection of Small Blowholes in Aluminum by Using Laser Ultrasonics Technique. Int. J. Thermophys. 2015, 36, 1181–1188. [Google Scholar] [CrossRef]
- Cooper, J.A.; Crosbie, R.A.; Dewhurst, R.J.; Mckie, A.D.W.; Palmer, S.B. Surface acoustic wave interactions with cracks and slots: A noncontacting study using lasers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1986, 33, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Hutchins, D.A.; Hauser, F.; Goetz, T. Surface waves using laser generation and electromagnetic acoustic transducer detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1986, 33, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Jian, X.; Fan, Y.; Edwards, R.S.; Dixon, S. Surface-breaking crack gauging with the use of laser-generated Rayleigh waves. J. Appl. Phys. 2006, 100, 064907. [Google Scholar] [CrossRef]
- Lomonosov, A.M.; Grigoriev, P.V.; Hess, P. Sizing of partially closed surface-breaking microcracks with broadband Rayleigh waves. J. Appl. Phys. 2009, 105, 084906. [Google Scholar] [CrossRef] [Green Version]
- Rinkevich, A.B.; Perov, D.V.; Korkh, Y.V. Laser detection of elastic waves diffraction by the crack’s edge. Appl. Acoust. 2012, 73, 803–808. [Google Scholar] [CrossRef]
- Faëse, F.; Jenot, F.; Ouaftouh, M.; Duquennoy, M.; Ourak, M. Fast slot characterization using laser ultrasonics and mode conversion. Meas. Sci. Technol. 2013, 24, 095602. [Google Scholar] [CrossRef]
- Dai, Y.; Xu, B.Q.; Luo, Y.; Li, H.; Xu, G.D. Finite element modeling of the interaction of laser-generated ultrasound with a surface-breaking notch in an elastic plate. Opt. Laser Technol. 2010, 42, 693–697. [Google Scholar] [CrossRef]
- Guan, J.; Shen, Z.; Lu, J.; Ni, X.; Wang, J.; Xu, B. Finite Element Analysis of the Scanning Laser Line Source Technique. Jpn. J. Appl. Phys. 2006, 45, 5046–5050. [Google Scholar] [CrossRef]
- Sohn, Y.; Krishnaswamy, S. Interaction of a scanning laser-generated ultrasonic line source with a surface-breaking flaw. J. Acoust. Soc. Am. 2004, 115, 172–181. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.C.; Ni, C.Y.; Shen, Z.H. Analysis of laser generated ultrasonic wave frequency characteristics induced by a partially closed surface-breaking crack. Appl. Opt. 2013, 52, 4179–4185. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.G.; Zhang, K.S.; Zhou, J.H.; Sun, G.K.; Wang, J. Application of laser ultrasonic technique for non-contact detection of structural surface-breaking cracks. Opt. Laser Technol. 2015, 73, 173–178. [Google Scholar] [CrossRef]
- Wang, C.Y.; Sun, A.; Xue, M.; Ju, B.F.; Xiong, J.; Xu, X. Width gauging of surface slot using laser-generated Rayleigh waves. Opt. Laser Technol. 2017, 92, 15–18. [Google Scholar] [CrossRef]
- Harb, M.S.; Yuan, F.-G. Damage imaging using non-contact air-coupled transducer/laser Doppler vibrometer system. Struct. Health Monit. 2016, 15, 193–203. [Google Scholar] [CrossRef]
- Imai, M.; Ohashi, T.; Ohtsuka, Y. Fiber-optic Michelson inter-ferometer using an optical power divider. Opt. Lett. 1980, 5, 418–420. [Google Scholar] [CrossRef]
- Alcoz, J.J.; Lee, C.E.; Taylor, H.F. Embedded fiber-optic Fabry-Perot ultrasound sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1990, 37, 302–306. [Google Scholar] [CrossRef]
- Yuan, L.B.; Zhou, L.M.; Jin, W. Long-gauge length embedded fiber optic ultrasonic sensor for large-scale concrete structures. Opt. Laser Technol. 2004, 36, 11–17. [Google Scholar] [CrossRef]
- Drake, A.D.; Leiner, D.C. Fiber-optic interferometer for remote subangstrom vibration measurement. Rev. Sci. Instrum. 1984, 55, 162–165. [Google Scholar] [CrossRef]
- Scruby, C.B.; Drain, L.E. Laser Ultrasonics: Techniques and Applications; Adam Hilger: Bristol, UK, 1990; pp. 262–274. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.-B.; Yan, W.-B.; Liu, H.; Tong, C.-G.; Fan, Y.-X.; Tao, Z.-Y. Internal Cylinder Identification Based on Different Transmission of Longitudinal and Shear Ultrasonic Waves. Sensors 2021, 21, 723. https://doi.org/10.3390/s21030723
Liu W-B, Yan W-B, Liu H, Tong C-G, Fan Y-X, Tao Z-Y. Internal Cylinder Identification Based on Different Transmission of Longitudinal and Shear Ultrasonic Waves. Sensors. 2021; 21(3):723. https://doi.org/10.3390/s21030723
Chicago/Turabian StyleLiu, Wen-Bei, Wen-Bo Yan, Huan Liu, Cheng-Guo Tong, Ya-Xian Fan, and Zhi-Yong Tao. 2021. "Internal Cylinder Identification Based on Different Transmission of Longitudinal and Shear Ultrasonic Waves" Sensors 21, no. 3: 723. https://doi.org/10.3390/s21030723