High-Precision Lensless Microscope on a Chip Based on In-Line Holographic Imaging
<p>Schematic of the lensless on-chip microscope. (<b>a</b>) Photographs of the apparatus, (<b>b</b>) structure of in-line holographic imaging device.</p> "> Figure 2
<p>The results of iterative phase recovery. (<b>a</b>) Original United States Air Force (USAF) holographic image, (<b>b</b>) iteratively recovered image.</p> "> Figure 3
<p>Comparison of images taken by different systems. (<b>a</b>) Iteratively recovered image, (<b>b</b>) shadow image, (<b>c</b>) microscope image.</p> "> Figure 4
<p>Results of the holographic imaging experiment process. (<b>a</b>) Microscope image, (<b>b</b>) raw holographic image, (<b>c</b>) iteratively recovered image, (<b>d</b>) insets of the iteratively recovered image.</p> "> Figure 5
<p>Results of the image process: (<b>a</b>) recognition results, and (<b>b</b>) counting results of the cell.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. System Setup
2.2. Sample Preparation
2.3. Imaging Principle
- The root mean square of the holographic image information recorded by the image sensor is propagated back to the object surface, the phase information on the object surface is assumed to be zero at this time, and the phase information is finally restored on the object surface through an iterative method. At the same time, the threshold segmentation method is used to determine the boundary of the sample object.In Equation (6), represents the real image field distribution after the first iteration.
- The information inside the boundary of the object is retained, and the information outside the boundary is replaced by the information after the backpropagation of the sample-free background image:In Equation (7), is obtained by backpropagating the root mean square of the background image without samples, is the iteration coefficient, and represents the real image field distribution after the ith iteration.
- The reconstructed field after being constrained in the second step is propagated forward to the surface of the image sensor. At this time, the phase value is no longer zero, and the phase value is retained. The amplitude value is determined by the root mean square band of the original recorded holographic image, amplitude. The diffraction field, , after the ith iteration is expressed as follows:
3. Experiments and Results
3.1. Image Quality Assessment
- Non-reference image quality evaluation
- Reference image quality evaluation
3.2. Cell Analysis
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Millet, L.; Mir, M.; Ding, H.; Popescu, G. Spatial light interference microscopy (SLIM). Opt. Express 2011, 19, 1016–1026. [Google Scholar] [CrossRef]
- Garcia-Sucerquia, J.; Xu, W.; Jericho, S.K.; Klages, P.; Jericho, M.H.; Kreuzer, H.J. Digital in-line holographic microscopy. Appl. Opt. 2006, 45, 836–850. [Google Scholar] [CrossRef] [PubMed]
- Cuche, E.; Bevilacqua, F.; Depeursinge, C. Digital holography for quantitative phase-contrast imaging. Opt. Lett. 1999, 24, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Xu, W. Digital in-line holography for biological applications. Proc. Natl. Acad. Sci. USA 2001, 98, 11301–11305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waller, L.; Luo, Y.; Yang, S.Y.; Barbastathis, G. Transport of intensity phase imaging in a volume holographic microscope. Opt. Lett. 2010, 35, 2961–2963. [Google Scholar] [CrossRef] [PubMed]
- Leith, E.N.; Upatnieks, J.; Haines, K.A. Microscopy by Wavefront Reconstruction. JOSA 1965, 55, 981–986. [Google Scholar] [CrossRef]
- Schmitt, J.M. Optical coherence tomography (OCT): A review. IEEE J. Sel. Top. Quantum Electron. 2002, 5, 1205–1215. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, G. James, Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotechnol. 2003, 21, 1361–1367. [Google Scholar] [CrossRef]
- Sharpe, J.; Ahlgren, U.; Perry, P.; Hill, B.; Ross, A.; Hecksher-Sørensen, J.; Baldock, R.; Davidson, D. Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 2002, 296, 541–545. [Google Scholar] [CrossRef] [Green Version]
- Hell, S.W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782. [Google Scholar] [CrossRef]
- Betzig, E.; Patterson, G.; Sougrat, R.; Lindwasser, O.; Olenych, S.; Bonifacino, J.; Davidson, M.; Lippincott-Schwartz, J.; Hess, H. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313, 1642–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yager, P.; Domingo, G.J.; Gerdes, J. Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng. 2008, 10, 107. [Google Scholar] [CrossRef] [PubMed]
- Wongsrichanalai, C.; Barcus, M.J.; Muth, S.; Sutamihardja, A.; Wernsdorfer, W.H. A review of malaria diagnostic tools: Microscopy and rapid diagnostic test (RDT). Am. J. Trop. Med. Hyg. 2007, 77, 119–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frenette, P.S.; Atweh, G.F. Sickle cell disease: Old discoveries, new concepts, and future promise. J. Clin. Investig. 2007, 117, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Göröcs, Z.; Ozcan, A. On-chip biomedical imaging. IEEE Rev. Biomed. Eng. 2012, 6, 29–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenbaum, A.; Luo, W.; Su, T.-W.; Göröcs, Z.; Xue, L.; Isikman, S.O.; Coskun, A.F.; Mudanyali, O.; Ozcan, A. Imaging without lenses: Achievements and remaining challenges of wide-field on-chip microscopy. Nat. Methods 2012, 9, 889–895. [Google Scholar] [CrossRef]
- Isikman, S.O.; Bishara, W.; Mudanyali, O.; Sencan, I.; Su, T.-W.; Tseng, D.K.; Yaglidere, O.; Sikora, U.; Ozcan, A. Lensfree on-chip microscopy and tomography for biomedical applications. IEEE J. Sel. Top. Quantum Electron. 2011, 18, 1059–1072. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Xu, D.; Chen, J.; Liu, J.; Li, Y.; Song, J.; Ma, X.; Guo, J. Smartphone-based analytical biosensors. Analyst 2018, 143, 5339–5351. [Google Scholar] [CrossRef]
- Huang, X.; Li, Y.; Chen, J.; Liu, J.; Wang, R.; Xu, X.; Yao, J.; Guo, J. Smartphone-based blood lipid data acquisition for cardiovascular disease management in internet of medical things. IEEE Access 2019, 7, 75276–75283. [Google Scholar] [CrossRef]
- Xu, D.; Huang, X.; Guo, J.; Ma, X. Automatic smartphone-based microfluidic biosensor system at the point of care. Biosens. Bioelectron. 2018, 110, 78–88. [Google Scholar] [CrossRef]
- Yuan, X.; Pu, Y. Parallel lensless compressive imaging via deep convolutional neural networks. Opt. Express 2018, 26, 1962–1977. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, S.A.; Hillman, T.R.; Gutzler, T.; Sampson, D.D. Synthetic aperture Fourier holographic optical microscopy. Phys. Rev. Lett. 2006, 97, 168102. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Greenbaum, A.; Zhang, Y.; Ozcan, A. Synthetic aperture-based on-chip microscopy. Light Sci. Appl. 2015, 4, e261. [Google Scholar] [CrossRef]
- Delacroix, R.; Morel, S.N.A.; Hervé, L.; Bordy, T.; Dinten, J.-M.; Drancourt, M.; Allier, C. Cerebrospinal fluid lens-free microscopy: A new tool for the laboratory diagnosis of meningitis. Sci. Rep. 2017, 7, 39893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Q.; McLeod, E.; Qi, H.; Wan, Z.; Sun, R.; Ozcan, A. Lensfree holographic cytometry using plasmonic nanoparticles. In Proceedings of the IEEE Photonics Conference, Bellevue, WA, USA, 8–12 September 2013; pp. 3–4. [Google Scholar]
- Huang, X.; Guo, J.; Wang, X.; Yan, M.; Kang, Y.; Yu, H. A contact-imaging based microfluidic cytometer with machine-learning for single-frame super-resolution processing. PLoS ONE 2014, 9, e104539. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Lee, S.A.; Antebi, Y.; Elowitz, M.B.; Yang, C. The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM). Proc. Natl. Acad. Sci. USA 2011, 108, 16889–16894. [Google Scholar] [CrossRef] [Green Version]
- Coskun, A.F.; Su, T.-W.; Ozcan, A. Wide field-of-view lens-free fluorescent imaging on a chip. Lab Chip 2010, 10, 824–827. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.; Su, T.-W.; Tseng, D.K.; Erlinger, A.; Ozcan, A. Lensfree holographic imaging for on-chip cytometry and diagnostics. Lab Chip 2009, 9, 777–787. [Google Scholar] [CrossRef]
- Vercruysse, D.; Dusa, A.; Stahl, R.; Vanmeerbeeck, G.; de Wijs, K.; Liu, C.; Prodanov, D.; Peumans, P.; Lagae, L. Three-part differential of unlabeled leukocytes with a compact lens-free imaging flow cytometer. Lab Chip 2015, 15, 1123–1132. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, Y.; Chaudhari, G.; Rivenson, Y.; Calis, A.; de Haan, K.; Ozcan, A. Bright-field holography: Cross-modality deep learning enables snapshot 3D imaging with bright-field contrast using a single hologram. Light Sci. Appl. 2019, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Yu, N.; Jiang, Y.; Dang, C. High-precision lens-less flow cytometer on a chip. Micromachines 2018, 9, 227. [Google Scholar] [CrossRef] [Green Version]
- Rivenson, Y.; Wu, Y.; Ozcan, A. Deep learning in holography and coherent imaging. Light Sci. Appl. 2019, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ray, A.; Khalid, M.A.; Demčenko, A.; Daloglu, M.; Tseng, D.; Reboud, J.; Cooper, J.M.; Ozcan, A. Holographic detection of nanoparticles using acoustically actuated nanolenses. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wei, Z.; Rivenson, Y.; de Haan, K.; Zhang, Y.; Wu, Y.; Ozcan, A. Deep learning-based color holographic microscopy. J. Biophotonics 2019, 12, e201900107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabor, D.; Kock, W.E.; Stroke, G.W. Holography. Science 1971, 173, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Mudanyali, O.; Tseng, D.; Oh, C.; Isikman, S.O.; Sencan, I.; Bishara, W.; Oztoprak, C.; Seo, S.; Khademhosseini, B.; Ozcan, A. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 2010, 10, 1417–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. Blind/Referenceless Image Spatial Quality Evaluator. In Proceedings of the 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, USA, 6–9 November 2011. [Google Scholar]
- Lee, C.; Cho, S.; Choe, J.; Jeong, T.; Ahn, W.; Lee, E. Objective video quality assessment. Opt. Eng. 2006, 45, 17004. [Google Scholar] [CrossRef]
- Arganda-Carreras, I.; Kaynig, V.; Rueden, C.; Eliceiri, K.W.; Schindelin, J.; Cardona, A.; Seung, H.S. Trainable Weka Segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics 2017, 33, 2424–2426. [Google Scholar] [CrossRef]
Image | ||
---|---|---|
Shadow | 2.1841 | 0.1648 |
Recovered hologram | 0.9738 | 0.2174 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Li, Y.; Xu, X.; Wang, R.; Yao, J.; Han, W.; Wei, M.; Chen, J.; Xuan, W.; Sun, L. High-Precision Lensless Microscope on a Chip Based on In-Line Holographic Imaging. Sensors 2021, 21, 720. https://doi.org/10.3390/s21030720
Huang X, Li Y, Xu X, Wang R, Yao J, Han W, Wei M, Chen J, Xuan W, Sun L. High-Precision Lensless Microscope on a Chip Based on In-Line Holographic Imaging. Sensors. 2021; 21(3):720. https://doi.org/10.3390/s21030720
Chicago/Turabian StyleHuang, Xiwei, Yangbo Li, Xuefeng Xu, Renjie Wang, Jiangfan Yao, Wentao Han, Maoyu Wei, Jin Chen, Weipeng Xuan, and Lingling Sun. 2021. "High-Precision Lensless Microscope on a Chip Based on In-Line Holographic Imaging" Sensors 21, no. 3: 720. https://doi.org/10.3390/s21030720
APA StyleHuang, X., Li, Y., Xu, X., Wang, R., Yao, J., Han, W., Wei, M., Chen, J., Xuan, W., & Sun, L. (2021). High-Precision Lensless Microscope on a Chip Based on In-Line Holographic Imaging. Sensors, 21(3), 720. https://doi.org/10.3390/s21030720