Reliable Time Propagation Algorithms for PMF and RBPMF
<p>Comparison of the variances of the various kernels, the conventional kernel, MMGK, and DWC.</p> "> Figure 2
<p>Comparison of the probability diffusion processes between the conventional and the proposed PMF (<b>a</b>) Conventional PMF (<b>b</b>) Proposed PMF.</p> "> Figure 3
<p>Comparison of the estimated PDFs between the conventional PMF, the proposed PMF, and the PF for several different cases (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>Q</mi> <mi>k</mi> </msub> <mo>=</mo> <msup> <mn>2</mn> <mn>2</mn> </msup> <mo>,</mo> <mspace width="3.33333pt"/> <mo>Δ</mo> <mi>ξ</mi> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <mi>k</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math> (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>Q</mi> <mi>k</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <msup> <mn>3</mn> <mn>2</mn> </msup> <mo>,</mo> <mspace width="3.33333pt"/> <mo>Δ</mo> <mi>ξ</mi> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="3.33333pt"/> <mi>k</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math> (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>Q</mi> <mi>k</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <msup> <mn>3</mn> <mn>2</mn> </msup> <mo>,</mo> <mspace width="3.33333pt"/> <mo>Δ</mo> <mi>ξ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>0.5</mn> <mo>,</mo> <mspace width="3.33333pt"/> <mi>k</mi> <mo>=</mo> <mn>11</mn> </mrow> </semantics></math> (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>Q</mi> <mi>k</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <msup> <mn>3</mn> <mn>2</mn> </msup> <mo>,</mo> <mspace width="3.33333pt"/> <mo>Δ</mo> <mi>ξ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>0.5</mn> <mo>,</mo> <mspace width="3.33333pt"/> <mi>k</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Comparison of the estimation errors between the conventional PMF, the proposed PMF, and the PF for various grid intervals and process noise variances (<b>a</b>) <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>ξ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> (<b>b</b>) <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>ξ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> (<b>c</b>) <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>ξ</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math> (<b>d</b>) <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>ξ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Comparison of the computation time between the conventional PMF and the proposed PMF for various grid intervals and process noise variances (<b>a</b>) computation times v.s. grid intervals (<b>b</b>) computation time v.s. process noise variances for two grid intervals.</p> "> Figure 6
<p>Comparison of the estimation errors between the conventional PMF, the proposed PMF for two dimensional body fall problem (<b>a</b>) altitude estimation error (<b>b</b>) velocity estimation error.</p> "> Figure 7
<p>Illustrations of PMF and RBPMF concepts for two dimensional estimation problem (<b>a</b>) PMF (<b>b</b>) RBPMF.</p> "> Figure 8
<p>Concept of the approximation of the joint probability of the nonlinear part and the linear part by the linear interpolation in RBPMF.</p> "> Figure 9
<p>Comparison of the simulation error RMS of the RBPMFs for the growth model with two unknown parameters (<b>a</b>) Nonlinear state estimation error (<b>b</b>) Parameter estimation errors (<b>c</b>) Magnification of (<b>a</b>) (<b>d</b>) Magnifications of (<b>b</b>).</p> "> Figure 10
<p>Kernel length profile for the growth model with the two unknown parameters.</p> "> Figure 11
<p>Ground trajectory and terrain elevation for INS/TRN simulation.</p> "> Figure 12
<p>Comparison of the position error RMS of the conventional RBPMF (Algorithm 3), RBPMF with MMGK (Algorithm 4), and RBPMF for constant linear model (Algorithm 5).</p> ">
Abstract
:1. Introduction
2. Bayesian Filtering
3. PMF with Reliable Time Propagation
3.1. Conventional PMF with Direct Time Propagation
Algorithm 1 Conventional PMF | |
1: | Initialization Define the initial grid set and the masses for the initial priori PDF ; , . Set . |
2: | Measurement Update Calculate the measurement updated masses for all (Normalization Constant) |
3: | Grid Propagation Calculate the nonlinear mapped grid set |
4: | Grid Redefinition Redefine the grid set with regular grid spacing from |
5: | Time Propagation Calculate the predicted masses for all |
6: | Update and repeat (2)–(5) |
3.2. PMF with Indirect Time Propagation
Algorithm 2 PMF with Indirect Time Propagation | |
1: | Initialization Same as (1) of Algorithm 1 |
2: | Measurement Update Same as (2) of Algorithm 1 |
3: | Grid Propagation Same as (3) of Algorithm 1 |
4: | Grid and Mass Redefinition Redefine the grid set from and calculate the interpolated masses for all If has two or more solutions, repeat the linear interpolation for each solution and calculate their total sum. Calculate the total kernel as a tensor product after finding MMGK for each process noise. |
5: | Time Propagation Calculate the predicted masses with and for all |
6: | Update and repeat (2)–(5) |
3.3. Numerical Examples
3.3.1. One Dimensional Growth Model
3.3.2. Two Dimensional Body Fall Problem
4. Rao–Blackwellized PMF with Reliable Time Propagation
4.1. Conventional Rao–Blackwellized PMF
Algorithm 3 Conventional RBPMF | |
1: | Initialization Define initial grids, masses for the nonlinear part PDF , and initial normal distributions for linear part PDF ; , , . Set . |
2: | Measurement Update for Nonlinear State Calculate measurement updated masses. (Normalization Constant) where |
3: | Measurement Update for Linear State KF measurement update for the linear part with measurement |
4: | Grid Time Propagation for Nonlinear State Calculate the nonlinear mapped grid set |
5: | Grid Redefinition Redefine the grid set from |
6: | Time Propagation for Nonlinear State Calculate priori masses where |
7: | Time Propagation for Linear State KF time propagate for the linear part with artifact measurement where , and |
8: | Marginalization for Linear State Marginalize the linear part PDF for by applying moment matching |
9: | Update and repeat (2)–(8) |
4.2. Rao–Blackwellized PMF with MMGK
Algorithm 4 RBPMF with MMGK | |
1: | Initialization Same as (1) of Algorithm 3 |
2: | Measurement Update for Nonlinear State Same as (2) of Algorithm 3 |
3: | Measurement Update for Linear State Same as (3) of Algorithm 3 |
4: | Grid Propagation for Nonlinear State Calculate the nonlinear mapped new grid set |
5: | Grid Redefinition Same as (5) of Algorithm 3 |
6: | Time Propagation for Nonlinear State Generate the MMGK with mean and variance , and calculate the priori masses as follows , only for (otherwise 0) where means that lies within the effective support range of . |
7: | Time Propagation for Linear State Same as (7) of Algorithm 3 |
8: | Marginalization for Linear State Same as (8) of Algorithm 3 except that the summations are conducted only for |
9: | Update and repeat (2)–(8) |
4.3. Rao–Blackwelkized PMF with Indirect Time Propagation for Constant Linear Model Case
Algorithm 5 RBPMF with Indirect Time Propagation for Constant Linear Model | |
1: | Initialization Same as (1) of Algorithm 3 except for the constant linear state covariance |
2: | Measurement Update for Nonlinear State Calculate the measurement updated masses. (Normalization Constant) where |
3: | Measurement Update for Linear State KF measurement updates for the linear part with measurement |
4: | Grid Time Propagation for Nonlinear State Calculate the nonlinear mapped grid set |
5: | Grid, Mass, and Linear State Distribution Redefinition Redefine the grid set from . Calculate the interpolated masses for and redefine the linear state mean |
6: | Time Propagation for Nonlinear State Generate the MMGK for each axis of the process noise whose variance is . Calculate the priori masses by applying kernel , the tensor product of , only for j where (otherwise 0) where the index i is limited to the range of |
7: | Time Propagation for Linear State KF time propagate for the linear part with artifact measurement where |
8: | Marginalization for Linear State Marginalize the linear part PDF for by applying moment matching where is a positive diagonal matrix and the summation is conducted only for |
9: | Update and repeat (2)–(8) |
4.4. Numerical Examples
4.4.1. Growth Model with Unknown Parameters
4.4.2. Tightly-Coupled INS/TRN Integration
- No Integration: Single TRN filter structure without any integration;
- Loosely-coupled: Cascaded structure of the INS aiding filter following TRN filter;
- Tightly-coupled: Single filter structure combining TRN filter and INS aiding filter.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Simon, D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches; Wiley-Interscience: New York, NY, USA, 2006; pp. 400–409, 451–452, 462–466, 466–469. [Google Scholar]
- Gustafsson, F. Statistical Sensor Fusion; Studentlitteratur AB: Sweden, Switzerland, 2010; pp. 133–136, 197–198, 216–221, 233–236, 253–254. [Google Scholar]
- Boutayeb, M.; Rafaralahy, H.; Darouach, M. Convergence Analysis of the Extended Kalman Filter Used as an Observer For Nonlinear Deterministic Discrete-time Systems. IEEE Trans. Autom. Control 1997, 42, 581–586. [Google Scholar] [CrossRef]
- Barrau, A.; Bonnabel, S. The Invariant Extended Kalman Filter as a Stable Observer. IEEE Trans. Autom. Control 2017, 62, 1797–1812. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z. Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond. Stat. A J. Theor. Appl. Stat. 2003, 182, 1–69. [Google Scholar]
- Fang, H.; Tian, N.; Wang, Y.; Zhou, M.; Haile, M.A. Nonlinear Bayesian Estimation: From Kalman Filtering to a Broader Horizon. IEEE/CAA J. Autom. Sin. 2018, 5, 401–417. [Google Scholar] [CrossRef] [Green Version]
- Särkkä, S. Bayesian Filtering and Smoothing; Online Edition for Perfonal Use; Cambridge University Press: Cambridge, UK, 2013; pp. 97–99. [Google Scholar]
- Gordon, N.J.; Salmond, D.J.; Smith, A.F. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation. IEE Proc. F-Radar Signal Process. 1993, 140, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, F. Particle Filter Theory and Practice with Positioning Applications. IEEE Aerosp. Electron. Syst. Mag. 2010, 25, 53–82. [Google Scholar] [CrossRef] [Green Version]
- Crisan, D.; Doucet, A. A Survey of Convergence Results on Particle Filtering Methods for Practitioners. IEEE Trans. Signal Process. 2002, 50, 736–746. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.L.; Schön, T.B.; Ljung, L. A Basic Convergence Result for Particle Filtering. IEEE Trans. Signal Process. 2008, 56, 1337–1348. [Google Scholar] [CrossRef] [Green Version]
- Schön, T.; Gustafsson, F.; Nordlund, P.J. Marginalized Particle Filters for Mixed Linear/Nonlinear State-Space Models. IEEE Trans. Signal Process. 2005, 53, 2279–2289. [Google Scholar] [CrossRef] [Green Version]
- Lindsten, F. Rao–Blackwellised Particle Methods for Inference and Identification. Ph.D. Thesis, Department of Electrical Engineering, Linköping University, Linköping, Sweden, 2011; pp. 42–55. [Google Scholar]
- Jia, B.; Xin, M. Grid-Based Nonlinear Estimation and Its Applications; CRC Press: Boca Raton, FL, USA, 2019; pp. 38–40. [Google Scholar]
- Bucy, R.S.; Senne, K.D. Digital Synthesis of Nonlinear Filters. Automatica 1971, 7, 287–298. [Google Scholar] [CrossRef]
- Bergman, N.; Ljung, L.; Gustafsson, F. Point-mass Filter and Cramer-Rao Bound for Terrain-aided Navigation. In Proceedings of the 36th IEEE Conference on Decision and Control, San Diego, CA, USA, 12 December 1997; pp. 565–570. [Google Scholar]
- Bergman, N. Recursive Bayesian Estimation: Navigation and Tracking Applications. Ph.D. Thesis, Department of Electrical Engineering, Linköping University, Linköping, Sweden, 1999; pp. 86–96. [Google Scholar]
- Šimandl, M.; Královeca, J.; Söderström, T. Advanced Point-mass Method for Nonlinear State Estimation. Automatica 2006, 42, 1133–1145. [Google Scholar] [CrossRef]
- Jeon, H.C.; Park, W.J.; Park, C.G. Grid Design for Efficient and Accurate Point Mass Filter-based Terrain Referenced Navigation. IEEE Sens. J. 2018, 18, 1731–1738. [Google Scholar] [CrossRef]
- Park, Y.-G.; Park, C.G. Grid Support Adaptation for Point Mass Filter Based Terrain Referenced Navigation Using Mutual Information. IEEE Sens. J. 2018, 18, 7603–7610. [Google Scholar] [CrossRef]
- Matoušek, J.; Duník, J.; Straka, O. Point-mass Filter: Density Specific Grid Design and Implementation. In Proceedings of the 15th European Workshop on Advanced Control and Diagnosis, Bologna, Italy, 21–22 November 2019; pp. 1–20. [Google Scholar]
- Matoušek, J.; Duník, J.; Straka, O. Density Difference Grid on a Point-mass Filter. Energies 2020, 13, 4080. [Google Scholar] [CrossRef]
- Sung, C.-K.; Nam, S.H.; Yu, M.J. Terrain Referenced Navigation Based on Robust Point Mass Filter Using Variance Adjusted Discrete Normal PDF and Mean Valued Likelihood. In Proceedings of the ION 2017 Pacific PNT Meeting, Honolulu, HI, USA, 1–4 May 2017; pp. 126–135. [Google Scholar]
- Sung, C.-K.; Lee, S.J. Moment Matched Gaussian Kernel and Region Representative Likelihood for Performance Improvement of PMF-based TRN. Int. J. Control Autom. Syst. 2020, 18, 1691–1704. [Google Scholar] [CrossRef]
- Duník, J.; Straka, O.; Matoušek, J. Reliable Convolution in Point-Mass Filter for a Class of Nonlinear Models. In Proceedings of the 2020 IEEE 23rd International Conference on Information Fusion (FUSION), Rustenburg, South Africa, 6–9 July 2020; pp. 1–7. [Google Scholar]
- Šmídl, V.; Gašperin, M. Rao-blackwellized Point Mass Filter for Reliable State Estimation. In Proceedings of the 16th International Conference on Information Fusion, Istanbul, Turkey, 9–12 July 2013; pp. 312–318. [Google Scholar]
- Sung, C.-K.; Lee, S.J. Rao-blackwellized Point Mass Filter and Its Application to Tightly-coupled INS/TRN Integration. In Proceedings of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation(ION GNSS+ 2018), Miami, FL, USA, 24–28 September 2018; pp. 3357–3366. [Google Scholar]
- Duník, J.; Sotak, M.; Vesely, M.; Straka, O.; Hawkinson, W. Design of Rao-blackwellised Point-mass Filter with Application in Terrain Aided Navigation. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 251–272. [Google Scholar] [CrossRef]
- Lim, J.N.; Park, C.G. RBPPFF for Robust TAN. IET Radar Sonar Navig. 2019, 13, 2230–2243. [Google Scholar] [CrossRef]
- Peng, D.; Zhou, T.; Xu, C.; Zhang, W.; Shen, J. Marginalized Point Mass Filter with Estimating Tidal Depth Bias for Underwater Terrain-aided Navigation. J. Sens. 2019, 2019, 1–15. [Google Scholar] [CrossRef]
- Jianbin, Q.; Ji, W.; Lam, H.; Wang, M. Fuzzy-Affine-Model Based Sampled-Data Filtering Design for Stochastic Nonlinear Systems. IEEE Trans. Fuzzy Syst. 2020, 1–13. [Google Scholar] [CrossRef]
- Amidror, I. Scattered Data Interpolation Methods for Electronic Imaging Systems: A Survey. J. Electron. Imaging 2002, 11, 157–176. [Google Scholar] [CrossRef]
- Papoulis, A.; Pillai, S.U. Probability, Random Variables and Stochastic Processes, 4th ed.; McGraw-Hill: New York, NY, USA, 2002; pp. 123–140. [Google Scholar]
- Lee, N.; Cichocki, A. Fundamental Tensor Operations for Large-Scale Data Analysis in Tensor Train Formats. arXiv 2014, arXiv:1405.7786. [Google Scholar]
- Ånonsen, K.B.; Hallingstad, O. Terrain Aided Underwater Navigation Using Point Mass and Particle Filters. In Proceedings of the IEEE/ION PLANS, San Diego, CA, USA, 25–27 April 2006; pp. 1027–1035. [Google Scholar]
- Tanizaki, H. Nonlinear Filters: Estimation and Applications; Springer: New York, NY, USA, 1996; pp. 39–42. [Google Scholar]
Grid Resolutions | Algorithms | Process Noise Standard Deviation Ratio vs. Grid Resolution | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
3.0 | 2.0 | 1.5 | 1.0 | 0.75 | 0.5 | 0.2 | 0.15 | 0.1 | ||
1.0 | Conventional PMF | 3.998 | 3.113 | 2.924 | 3.018 | 2.789 | 2.773 | 2.512 | 2.399 | 2.334 |
Proposed PMF | 4.153 | 3.391 | 3.052 | 2.918 | 2.458 | 2.469 | 1.689 | 1.684 | 1.618 | |
Bootstrap PF | 4.059 | 3.077 | 2.760 | 2.644 | 2.259 | 2.125 | 1.379 | 1.233 | 1.187 | |
0.5 | Conventional PMF | 2.815 | 2.744 | 2.598 | 2.543 | 2.250 | 2.122 | 1.990 | 2.022 | 2.345 |
Proposed PMF | 2.715 | 2.557 | 2.254 | 2.091 | 1.810 | 1.611 | 1.431 | 1.311 | 1.311 | |
Bootstrap PF | 2.652 | 2.493 | 2.222 | 2.089 | 1.821 | 1.525 | 1.107 | 1.049 | 0.968 | |
0.3 | Conventional PMF | 2.535 | 2.387 | 2.242 | 1.955 | 1.975 | 1.783 | 1.969 | 1.959 | 2.567 |
Proposed PMF | 2.431 | 2.231 | 2.048 | 1.728 | 1.634 | 1.441 | 1.299 | 1.144 | 1.265 | |
Bootstrap PF | 2.446 | 2.221 | 2.058 | 1.852 | 1.557 | 1.307 | 1.013 | 0.826 | 0.852 | |
0.1 | Conventional PMF | 1.709 | 1.369 | 1.381 | 1.111 | 1.230 | 1.144 | 0.858 | 0.835 | 0.744 |
Proposed PMF | 1.678 | 1.336 | 1.379 | 1.078 | 1.128 | 1.229 | 0.963 | 0.890 | 0.805 | |
Bootstrap PF | 1.713 | 1.334 | 1.352 | 1.029 | 1.083 | 1.087 | 0.598 | 0.530 | 0.399 |
Error Types | Error Magnitude (Standard Deviation) | |
---|---|---|
Initial Navigation Errors | Positions | 50/50/5 m (//) |
Velocities | 0.3/0.3/0.1 m/sec (//) | |
Attitudes | 0.1/0.1/1 mrad (//) | |
Accelrometer Bias Error | 100 ug | |
Accelrometer White Noise | 10 ug | |
Gyro Bias Error | 0.005 | |
Gyro White Noise | 0.005 | |
Radar Altimeter Error | 10 m |
Algorithm | Propagation | Update | Total | Ratio |
---|---|---|---|---|
Conventional RBPMF (Algorithm 3) | 723 | 28.5 | 751.5 | 1 |
RBPMF with MMGK (Algorithm 4) | 152.5 | 25.8 | 178.3 | 4.21 |
RBPMF for Constant Linear Model (Algorithm 5) | 123.2 | 9.3 | 132.5 | 5.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, C.-K.; Lee, S.J. Reliable Time Propagation Algorithms for PMF and RBPMF. Sensors 2021, 21, 261. https://doi.org/10.3390/s21010261
Sung C-K, Lee SJ. Reliable Time Propagation Algorithms for PMF and RBPMF. Sensors. 2021; 21(1):261. https://doi.org/10.3390/s21010261
Chicago/Turabian StyleSung, Chang-Ky, and Sang Jeong Lee. 2021. "Reliable Time Propagation Algorithms for PMF and RBPMF" Sensors 21, no. 1: 261. https://doi.org/10.3390/s21010261