Face Pose Alignment with Event Cameras
<p>Snapshot of spatio-temporal eyes-mouth annotation of a rotating face, with a frame length and step size of 10 ms. Annotation times are shown with event rate sequences of rectangular areas displayed in the frame image (red thick line designates the frame image). Also the polarity events are plotted as time-series, and are colored differently in the frame image.</p> "> Figure 2
<p>Two example superimpositions of motion detection grid (square domain and cell centers) as well as the reference eyes-mouth triangle according to the initial translations and scales.</p> "> Figure 3
<p>Comparison of prediction and human annotation under low, medium and high localization uncertainty ranges. Failure percentages are shown on the heat map where rows are the speed levels (still: no head motion label [0,1) pix/s, avg: average over levels excluding [0,1) pix/s). Cumulative distribution curves of the precision error are shown on the right where speed balancing is realized by sub-sampling without replacement equally from each speed interval.</p> "> Figure 4
<p>Snapshots of alignments at the high localization uncertainty setting. Each plot (<b>a</b>–<b>d</b>, <b>1</b>–<b>7</b>) shows a different snapshot from a different subject, or head pose. At each snapshot ground-truth annotation (red dots), second human annotation (green circles), initialization (blue dashed triangular shape), and prediction (orange triangular shape) are overlaid. Inter-human disagreement (h) and prediction (p) errors are written at the left-bottom corners.</p> "> Figure 5
<p>Pixel-event snapshots of 40 ms frame at different spatial scales while head is rotating (71.2 pix/s RMS speed). The scales from left to right are 1, <math display="inline"><semantics> <msup> <mn>2</mn> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math>, <math display="inline"><semantics> <msup> <mn>2</mn> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mn>2</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </semantics></math>, with pixel sizes written below.</p> "> Figure 6
<p>Failure percentages with varying cascade length for the three initialization uncertainty ranges.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Face Alignment
2.2. Event-Camera-Based Vision
3. Face Pose Alignment Dataset
3.1. Acquisition
3.2. Content
3.3. Pose Annotation on Event-Sensor Data
4. Event-Based Face Pose Alignment via Cascaded Regression
4.1. Event Sensor Data Representation in Space-Time
4.2. Pose Motion Detector
4.3. Pose-Invariant Cascaded Regression
4.4. Extremely Randomized Trees over Event Masses
4.5. Clustering-Based Multiple Initialization
5. Experimental Results
5.1. Evaluation Methodology
5.2. Comparison against Human Performance
5.3. Evaluation of Face Resolution
5.4. Evaluation of Model Complexity
6. Time Complexity Analysis
7. Discussion
8. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
Abbreviations
EC | Event camera |
ERT | Extremely randomized trees |
DNN | Deep neural network |
GPA | Generalized Procrustes analysis |
FNR | False negative rate |
RMS | Root mean square |
References
- Brandli, C.; Berner, R.; Yang, M.; Liu, S.C.; Delbruck, T. A 240 × 180 130 dB 3 μs Latency Global Shutter Spatiotemporal Vision Sensor. IEEE J. Solid-State Circuits 2014, 49, 2333–2341. [Google Scholar] [CrossRef]
- Posch, C.; Matolin, D.; Wohlgenannt, R. A QVGA 143 dB Dynamic Range Frame-Free PWM Image Sensor With Lossless Pixel-Level Video Compression and Time-Domain CDS. IEEE J. Solid-State Circuits 2010, 46, 259–275. [Google Scholar] [CrossRef]
- Wu, Y.; Ji, Q. Facial Landmark Detection: A Literature Survey. IJCV 2018, 127, 115–142. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Tan, X. Face Alignment In-the-wild. Comput. Vis. Image Underst. 2017, 162, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Bulat, A.; Tzimiropoulos, G. How far are we from solving the 2D & 3D Face Alignment problem? (and a dataset of 230,000 3D facial landmarks). In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Savran, A.; Tavarone, R.; Higy, B.; Badino, L.; Bartolozzi, C. Energy and Computation Efficient Audio-Visual Voice Activity Detection Driven by Event-Cameras. In Proceedings of the 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018. [Google Scholar]
- Li, X.; Neil, D.; Delbruck, T.; Liu, S. Lip Reading Deep Network Exploiting Multi-Modal Spiking Visual and Auditory Sensors. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019. [Google Scholar] [CrossRef]
- Lagorce, X.; Orchard, G.; Gallupi, F.; Shi, B.E.; Benosman, R. HOTS: A Hierarchy Of event-based Time-Surfaces for pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1346–1359. [Google Scholar] [CrossRef]
- Kazemi, V.; Sullivan, J. One Millisecond Face Alignment with an Ensemble of Regression Trees. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; Cao, X.; Wei, Y.; Sun, J. Face Alignment at 3000 FPS via Regressing Local Binary Features. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, X.; Lei, Z.; Li, S.Z. Face Alignment in Full Pose Range: A 3D Total Solution. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 78–92. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Wu, W.; Liu, T.; Yang, S.; Wang, Q.; Zhou, Q.; Ye, Z.; Qian, C. FAB: A Robust Facial Landmark Detection Framework for Motion-Blurred Videos. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Miao, X.; Zhen, X.; Liu, X.; Deng, C.; Athitsos, V.; Huang, H. Direct Shape Regression Networks for End-to-End Face Alignment. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Wu, Y.; Hassner, T.; Kim, K.; Medioni, G.; Natarajan, P. Facial Landmark Detection with Tweaked Convolutional Neural Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 3067–3074. [Google Scholar] [CrossRef] [Green Version]
- Bulat, A.; Tzimiropoulos, G. Super-FAN: Integrated Facial Landmark Localization and Super-Resolution of Real-World Low Resolution Faces in Arbitrary Poses With GANs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Yu, S.I.; Weng, X.; Wei, S.E.; Yang, Y.; Sheikh, Y. Supervision-by-Registration: An Unsupervised Approach to Improve the Precision of Facial Landmark Detectors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Merget, D.; Rock, M.; Rigoll, G. Robust Facial Landmark Detection via a Fully-Convolutional Local-Global Context Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Honari, S.; Molchanov, P.; Tyree, S.; Vincent, P.; Pal, C.; Kautz, J. Improving Landmark Localization With Semi-Supervised Learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Feng, Z.H.; Kittler, J.; Awais, M.; Huber, P.; Wu, X.J. Wing Loss for Robust Facial Landmark Localisation With Convolutional Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Peng, X.; Feris, R.S.; Wang, X.; Metaxas, D.N. RED-Net: A Recurrent Encoder-Decoder Network for Video-Based Face Alignment. IJCV 2018, 126, 1103–1119. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S.; Feng, J.; Liu, L.; Nie, X.; Wang, W.; Yan, S.; Kassim, A.A. Recurrent 3D-2D Dual Learning for Large-Pose Facial Landmark Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Jourabloo, A.; Liu, X.; Ye, M.; Ren, L. Pose-Invariant Face Alignment with a Single CNN. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Bhagavatula, C.; Zhu, C.; Luu, K.; Savvides, M. Faster than Real-Time Facial Alignment: A 3D Spatial Transformer Network Approach in Unconstrained Poses. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Lu, J.; Feng, J.; Zhou, J. Two-Stream Transformer Networks for Video-Based Face Alignment. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2546–2554. [Google Scholar] [CrossRef]
- Lv, J.; Shao, X.; Xing, J.; Cheng, C.; Zhou, X. A Deep Regression Architecture with Two-Stage Re-initialization for High Performance Facial Landmark Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Bulat, A.; Tzimiropoulos, G. Binarized Convolutional Landmark Localizers for Human Pose Estimation and Face Alignment with Limited Resources. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Yang, X.; Mello, S.D.; Kautz, J. Dynamic Facial Analysis: From Bayesian Filtering to Recurrent Neural Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar] [CrossRef]
- Trigeorgis, G.; Snape, P.; Nicolaou, M.A.; Antonakos, E.; Zafeiriou, S. Mnemonic Descent Method: A Recurrent Process Applied for End-to-End Face Alignment. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Shan, S.; Kan, M.; Chen, X. Coarse-to-Fine Auto-Encoder Networks (CFAN) for Real-Time Face Alignment. In Proceedings of the 13th European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014. [Google Scholar]
- Zhang, J.; Kan, M.; Shan, S.; Chen, X. Occlusion-Free Face Alignment: Deep Regression Networks Coupled with De-Corrupt AutoEncoders. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Wu, Y.; Ji, Q. Robust Facial Landmark Detection Under Significant Head Poses and Occlusion. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015. [Google Scholar] [CrossRef] [Green Version]
- Manderscheid, J.; Sironi, A.; Bourdis, N.; Migliore, D.; Lepetit, V. Speed Invariant Time Surface for Learning to Detect Corner Points with Event-Based Cameras. In Proceedings of the 2019 Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, H.; Chen, J.; Wang, L. Hybrid Deblur Net: Deep Non-Uniform Deblurring with Event Camera. IEEE Access 2020, 8, 148075–148083. [Google Scholar] [CrossRef]
- Rebecq, H.; Ranftl, R.; Koltun, V.; Scaramuzza, D. Events-To-Video: Bringing Modern Computer Vision to Event Cameras. In Proceedings of the 2019 Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019. [Google Scholar] [CrossRef] [Green Version]
- Maqueda, A.I.; Loquercio, A.; Gallego, G.; García, N.; Scaramuzza, D. Event-Based Vision Meets Deep Learning on Steering Prediction for Self-Driving Cars. In Proceedings of the 2018 Conference on Computer Vision and Pattern Recognition, Salt Lake, UT, USA, 18–23 June 2018. [Google Scholar]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Dollár, P.; Welinder, P. Cascaded pose regression. In Proceedings of the 2010 Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010. [Google Scholar] [CrossRef] [Green Version]
- Burgos-Artizzu, X.; Perona, P.; Dollár, P. Robust Face Landmark Estimation Under Occlusion. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013. [Google Scholar]
- Xiong, X.; la Torre, F.D. Supervised Descent Method and Its Applications to Face Alignment. In Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Wei, Y.; Wen, F.; Sun, J. Face Alignment by Explicit Shape Regression. IJCV 2014, 107, 177–190. [Google Scholar] [CrossRef]
- Chen, D.; Ren, S.; Wei, Y.; Cao, X.; Sun, J. Joint Cascade Face Detection and Alignment. In Proceedings of the 13th European Conference, Zurich, Switzerland, 6–12 September 2014. [Google Scholar] [CrossRef]
- Zhu, S.; Li, C.; Loy, C.C.; Tang, X. Face alignment by coarse-to-fine shape searching. In Proceedings of the 28th IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Xiao, S.; Yan, S.; Kassim, A.A. Facial Landmark Detection via Progressive Initialization. In Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop, ICCV Workshops, Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Lee, D.; Park, H.; Yoo, C.D. Face alignment using cascade Gaussian process regression trees. In Proceedings of the 28th IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar] [CrossRef] [Green Version]
- Chrysos, G.G.; Antonakos, E.; Snape, P.; Asthana, A.; Zafeiriou, S. A Comprehensive Performance Evaluation of Deformable Face Tracking “In-the-Wild”. IJCV 2018, 126, 198–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Deng, J.; Zhang, K.; Liu, Q. Facial Shape Tracking via Spatio-Temporal Cascade Shape Regression. In Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop, ICCV Workshops, Santiago, Chile, 7–13 December 2015. [Google Scholar] [CrossRef]
- Sánchez-Lozano, E.; Martínez, B.; Tzimiropoulos, G.; Valstar, M.F. Cascaded Continuous Regression for Real-Time Incremental Face Tracking. In Proceedings of the 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.H.; McDonagh, J.; Tzimiropoulos, G. Synergy between Face Alignment and Tracking via Discriminative Global Consensus Optimization. In Proceedings of the International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar] [CrossRef] [Green Version]
- Gallego, G.; Delbrück, T.; Orchard, G.; Bartolozzi, C.; Taba, B.; Censi, A.; Leutenegger, S.; Davison, A.J.; Conradt, J.; Daniilidis, K.; et al. Event-based Vision: A Survey. arXiv 2019, arXiv:1904.08405. [Google Scholar]
- Gehrig, D.; Loquercio, A.; Derpanis, K.G.; Scaramuzza, D. End-to-End Learning of Representations for Asynchronous Event-Based Data. In Proceedings of the 2019 International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Barua, S.; Miyatani, Y.; Veeraraghavan, A. Direct face detection and video reconstruction from event cameras. In Proceedings of the EEE Winter Conference on Application of Computer Vision, Lake Placid, NY, USA, 7–9 March 2016. [Google Scholar] [CrossRef]
- Valeiras, D.R.; Lagorce, X.; Clady, X.; Bartolozzi, C.; Ieng, S.; Benosman, R. An Asynchronous Neuromorphic Event-Driven Visual Part-Based Shape Tracking. IEEE Trans. Neu. Netw. Learn. Syst. 2015, 26, 3045–3059. [Google Scholar] [CrossRef]
- Lenz, G.; Ieng, S.H.; Benosman, R. Event-Based Face Detection and Tracking Using the Dynamics of Eye Blinks. Front. Neurosci. 2020, 14, 587. [Google Scholar] [CrossRef]
- Bardow, P.; Davison, A.J.; Leutenegger, S. Simultaneous Optical Flow and Intensity Estimation from an Event Camera. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef] [Green Version]
- Delbruck, T.; Hu, Y.; He, Z. V2E: From video frames to realistic DVS event camera streams. arXiv 2020, arXiv:2006.07722. [Google Scholar]
- Mueggler, E.; Rebecq, H.; Gallego, G.; Delbruck, T.; Scaramuzza, D. The event-camera dataset and simulator: Event-based data for pose estimation, visual odometry, and SLAM. Int. J. Robot. Res. 2017, 36, 142–149. [Google Scholar] [CrossRef]
- Gower, J. Generalized procrustes analysis. Psychometrika 1975, 40, 33–51. [Google Scholar] [CrossRef]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely Randomized Trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef] [Green Version]
- Sagonas, C.; Antonakos, E.; Tzimiropoulos, G.; Zafeiriou, S.; Pantic, M. 300 Faces In-The-Wild Challenge. Image Vis. Comput. 2016, 47, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Akolkar, H.; Meyer, C.; Clady, X.; Marre, O.; Bartolozzi, C.; Panzeri, S.; Benosman, R. What can neuromorphic event-driven precise timing add to spike-based pattern recognition? Neural Comput. 2015, 27, 561–593. [Google Scholar] [CrossRef] [PubMed]
- Scheerlinck, C.; Rebecq, H.; Gehrig, D.; Barnes, N.; Mahony, R.; Scaramuzza, D. Fast image reconstruction with an event camera. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020; pp. 156–163. [Google Scholar]
- Son, B.; Suh, Y.; Kim, S.; Jung, H.; Kim, J.S.; Shin, C.; Park, K.; Lee, K.; Park, J.; Woo, J.; et al. 4.1 A 640 × 480 dynamic vision sensor with a 9 μm pixel and 300Meps address-event representation. In Proceedings of the 2017 IEEE International Solid-State Circuits Conference (ISSCC), Francisco, CA, USA, 5–9 February 2017. [Google Scholar] [CrossRef]
- Lichtsteiner, P.; Posch, C.; Delbruck, T. A 128 × 128 120 dB 15 μs Latency Asynchronous Temporal Contrast Vision Sensor. IEEE J. Solid-State Circuits 2008, 43, 566–576. [Google Scholar] [CrossRef] [Green Version]
- Tarkoma, S.; Siekkinen, M.; Lagerspetz, E.; Xiao, Y. Smartphone Energy Consumption: Modeling and Optimization; Cambridge University Press: Cambdridge, UK, 2014; p. 460. [Google Scholar]
- Vidal, A.R.; Rebecq, H.; Horstschaefer, T.; Scaramuzza, D. Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM in HDR and High-Speed Scenarios. IEEE Robot. Autom. Lett. 2018, 3, 994–1001. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Huang, J.; Chen, S. Live demonstration: A 768 × 640 pixels 200Meps dynamic vision sensor. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MA, USA, 28–31 May 2017; p. 1. [Google Scholar]
Category | Actions | Clips | Length (min) |
---|---|---|---|
Intense head motion | rotations (roll, pitch, yaw), eye-blinks | 54 | 4.3 |
Moderate head motion | rotations (roll, pitch, yaw), talking lips, eye-blinks | 54 | 5.9 |
Total | 108 | 10.2 |
Uncertainty | Low | Medium | High |
---|---|---|---|
(translation) | 0.25 | 0.5 | 1.0 |
(scale) | 0.1 | 0.2 | 0.4 |
Prediction | Human Annotation | ||||
---|---|---|---|---|---|
Category | E-Rate (Hz) | Fail % | P. Err. | Fail % | P. Err. |
All | 32.2 | 2.73 | 0.13 | 1.02 | 0.12 |
Intense motion | 36.3 | 3.15 | 0.13 | 1.10 | 0.12 |
Moderate motion | 29.1 | 0.42 | 0.11 | 0.36 | 0.11 |
Category | [0,1) | [1,75) | [75,150) | [150,225) | [225,300) | [300,375) | [375,450) | avg. |
---|---|---|---|---|---|---|---|---|
Pr. – Hu. | Pr. – Hu. | Pr. – Hu. | Pr. – Hu. | Pr. – Hu. | Pr. – Hu. | Pr. – Hu. | Pr. – Hu. | |
All | 2.1 – 1.0 | 2.6 – 1.0 | 1.2 – 0.8 | 1.3 – 0.4 | 1.1 – 0.7 | 1.5 – 1.8 | 8.8 – 1.6 | 2.7 – 1.0 |
Intense motion | 4.1 – 1.7 | 4.5 – 1.3 | 1.7 – 0.8 | 1.4 – 0.4 | 1.1 – 0.7 | 1.5 – 1.8 | 8.8 – 1.6 | 3.2 – 1.1 |
Moderate motion | 1.1 – 0.7 | 1.7 – 0.8 | 0.0 – 0.6 | 0.0 – 0.0 | 0.0 – 0.0 | – | – | 0.4 – 0.4 |
Spatial down-sampling | |||
Event-cell size | |||
Resolution | |||
Low Uncertainty | 3.1 | 2.7 | 4.0 |
Medium Uncertainty | 14.6 | 13.7 | 12.6 |
High Uncertainty | 26.9 | 25.6 | 24.0 |
Tree Depth | 2 | 4 | 6 | 8 |
---|---|---|---|---|
Low Uncertainty | 4.2 | 2.7 | 3.0 | 3.2 |
Medium Uncertainty | 14.7 | 10.3 | 8.5 | 9.7 |
High Uncertainty | 26.4 | 18.9 | 16.9 | 17.3 |
Prediction | Human | |||
---|---|---|---|---|
Method | Low | Medium | High | Annotators |
Spatial down-sampling | 1/4 | 1/8 | 1/8 | – |
Tree depth | 4 | 6 | 6 | – |
Failure % | 2.7 | 8.5 | 16.9 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savran, A.; Bartolozzi, C. Face Pose Alignment with Event Cameras. Sensors 2020, 20, 7079. https://doi.org/10.3390/s20247079
Savran A, Bartolozzi C. Face Pose Alignment with Event Cameras. Sensors. 2020; 20(24):7079. https://doi.org/10.3390/s20247079
Chicago/Turabian StyleSavran, Arman, and Chiara Bartolozzi. 2020. "Face Pose Alignment with Event Cameras" Sensors 20, no. 24: 7079. https://doi.org/10.3390/s20247079