Adaptive Federated IMM Filter for AUV Integrated Navigation Systems
<p>The schematic diagram of the federated Kalman filter.</p> "> Figure 2
<p>The schematic diagram of the adaptive Federated IMM filter.</p> "> Figure 3
<p>The test vehicle platform.</p> "> Figure 4
<p>The real picture of the strapdown inertial navigation system (SINS).</p> "> Figure 5
<p>The real picture of the odometer.</p> "> Figure 6
<p>The estimation trajectories of the integrated navigation experiment.</p> "> Figure 7
<p>The estimation curves of heading angle.</p> "> Figure 8
<p>The estimation curves of heading angle error.</p> "> Figure 9
<p>The estimation curves of pitch angle.</p> "> Figure 10
<p>The estimation curves of pitch angle error.</p> "> Figure 11
<p>The estimation curves of roll angle.</p> "> Figure 12
<p>The estimation curves of roll angle error.</p> "> Figure 13
<p>The estimation curves of east velocity.</p> "> Figure 14
<p>The estimation curves of east velocity error.</p> "> Figure 15
<p>The estimation curves of north velocity.</p> "> Figure 16
<p>The estimation curves of north velocity error.</p> "> Figure 17
<p>The estimation curves of latitude.</p> "> Figure 18
<p>The estimation curves of latitude error.</p> "> Figure 19
<p>The estimation curves of longitude.</p> "> Figure 20
<p>The estimation curves of longitude error.</p> "> Figure 21
<p>The estimation curves of position error.</p> "> Figure 22
<p>The values of the information sharing coefficient.</p> "> Figure 23
<p>The model probability of the local SINS/DVL system.</p> "> Figure 24
<p>The model probability of the local SINS/TAN system.</p> "> Figure 25
<p>The mean absolute errors (MAEs) of position errors in 30 groups of integrated navigation experiments.</p> ">
Abstract
:1. Introduction
2. Federated Kalman Filter
- (1)
- Information sharing:
- (2)
- Time updating:
- (3)
- Measurement updating:
- (4)
- Information fusion:
3. Adaptive Federated IMM Filter
3.1. Adaptive Federated Kalman Filter
3.2. Adaptive Federated IMM Filter
- (1)
- Interactive input (model q):
- (2)
- Kalman filtering (model q):
- (3)
- Model probability updating (model q):
- (4)
- Interactive output:
4. AUV Integrated Navigation System Model
4.1. System Error Dynamics Model
4.2. System Measurement Model
- (1)
- SINS/DVL measurement equation
- (2)
- SINS/TAN measurement equation
5. Experimental Results and Discussions
5.1. Experimental Settings
5.2. Experimental Results and Discussions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Costanzi, R.; Fanelli, F.; Meli, E.; Ridolfi, A.; Caiti, A.; Allotta, B. UKF-based navigation system for AUVs: Online experimental validation. IEEE J. Ocean. Eng. 2018, 44, 633–641. [Google Scholar] [CrossRef]
- Tang, K.; Wang, J.; Li, W.; Wu, W. A novel INS and Doppler sensors calibration method for long range underwater vehicle navigation. Sensors 2013, 13, 14583–14600. [Google Scholar] [CrossRef] [Green Version]
- Hegrenaes, O.; Berglund, E. Doppler water-track aided inertial navigation for autonomous underwater vehicle. In Proceedings of the OCEANS 2009-EUROPE, Bremen, Germany, 11–14 May 2009; pp. 1–10. [Google Scholar]
- Stutters, L.; Liu, H.; Tiltman, C.; Brown, D.J. Navigation technologies for autonomous underwater vehicles. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2008, 38, 581–589. [Google Scholar] [CrossRef]
- Melo, J.; Matos, A. Survey on advances on terrain based navigation for autonomous underwater vehicles. Ocean Eng. 2017, 139, 250–264. [Google Scholar] [CrossRef] [Green Version]
- Miller, P.A.; Farrell, J.A.; Zhao, Y.; Djapic, V. Autonomous underwater vehicle navigation. IEEE J. Ocean. Eng. 2010, 35, 663–678. [Google Scholar] [CrossRef]
- Tal, A.; Klein, I.; Katz, R. Inertial navigation system/Doppler velocity log (INS/DVL) fusion with partial DVL measurements. Sensors 2017, 17, 415. [Google Scholar] [CrossRef] [PubMed]
- Lyu, W.; Cheng, X.; Wang, J. Adaptive UT-H∞ Filter for SINS’Transfer Alignment Under Uncertain Disturbances. IEEE Access 2020, 8, 69774–69787. [Google Scholar] [CrossRef]
- Lyu, W.; Cheng, X. A Novel Adaptive H∞ Filtering Method with Delay Compensation for the Transfer Alignment of Strapdown Inertial Navigation Systems. Sensors 2017, 17, 2753. [Google Scholar] [CrossRef] [Green Version]
- Karmozdi, A.; Hashemi, M.; Salarieh, H. Design and practical implementation of kinematic constraints in Inertial Navigation System-Doppler Velocity Log (INS-DVL)-based navigation. Navig. J. Inst. Navig. 2018, 65, 629–642. [Google Scholar] [CrossRef]
- Davari, N.; Gholami, A. An asynchronous adaptive direct Kalman filter algorithm to improve underwater navigation system performance. IEEE Sens. J. 2016, 17, 1061–1068. [Google Scholar] [CrossRef]
- Li, W.; Wu, W.; Wang, J.; Lu, L. A fast SINS initial alignment scheme for underwater vehicle applications. J. Navig. 2013, 66, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Donovan, G.T. Position error correction for an autonomous underwater vehicle inertial navigation system (INS) using a particle filter. IEEE J. Ocean. Eng. 2012, 37, 431–445. [Google Scholar] [CrossRef]
- Kalyan, B.; Balasuriya, A. Multisensor data fusion approach for terrain aided navigation of autonomous underwater vehicles. In Proceedings of the Oceans’ 04 MTS/IEEE Techno-Ocean’04 (IEEE Cat. No. 04CH37600), Kobe, Japan, 9–12 November 2004; pp. 2013–2018. [Google Scholar]
- Nygren, I.; Jansson, M. Terrain navigation for underwater vehicles using the correlator method. IEEE J. Ocean. Eng. 2004, 29, 906–915. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, T.; Gao, Y.; Wang, J. Efficient Terrain Matching With 3-D Zernike Moments. IEEE Trans. Aerosp. Electron. Syst. 2018, 55, 226–235. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, L.; Yan, Y. Underwater positioning algorithm based on SINS/LBL integrated system. IEEE Access 2018, 6, 7157–7163. [Google Scholar] [CrossRef]
- Fang, Y.; Yang, K.; Cheng, R.; Sun, L.; Wang, K. A Panoramic Localizer Based on Coarse-to-Fine Descriptors for Navigation Assistance. Sensors 2020, 20, 4177. [Google Scholar] [CrossRef]
- Xiong, Z.; Chen, J.-H.; Wang, R.; Liu, J.-Y. A new dynamic vector formed information sharing algorithm in federated filter. Aerosp. Sci. Technol. 2013, 29, 37–46. [Google Scholar] [CrossRef]
- Carlson, N.A. Federated square root filter for decentralized parallel processors. IEEE Trans. Aerosp. Electron. Syst. 1990, 26, 517–525. [Google Scholar] [CrossRef]
- Carlson, N.A.; Berarducci, M.P. Federated Kalman filter simulation results. Navigation 1994, 41, 297–322. [Google Scholar] [CrossRef]
- Carlson, N.A. Federated filter for fault-tolerant integrated navigation systems. In Proceedings of the IEEE PLANS’88, Position Location and Navigation Symposium, Record, ‘Navigation into the 21st Century’, Orlando, FL, USA, 29 November–2 December 1988; pp. 110–119. [Google Scholar]
- Carlson, N.A. Federated filter for computer-efficient, near-optimal GPS integration. In Proceedings of the Position, Location and Navigation Symposium-PLANS’96, Atlanta, GA, USA, 22–25 April 1996; pp. 306–314. [Google Scholar]
- Tupysev, V. Federated Kalman filtering via formation of relation equations in augmented state space. J. Guid. Control Dyn. 2000, 23, 391–398. [Google Scholar] [CrossRef]
- Shen, K.; Wang, M.; Fu, M.; Yang, Y.; Yin, Z. Observability Analysis and Adaptive Information Fusion for Integrated Navigation of Unmanned Ground Vehicles. IEEE Trans. Ind. Electron. 2019, 67, 7659–7668. [Google Scholar] [CrossRef]
- Qi-tai, G.; Song, W. Optimized Algorithm for Information-sharing Coefficients of Federated Filter. J. Chin. Inert. Technol. 2003, 11, 1–6. [Google Scholar]
- Zhang, Y.; Yu, F.; Wang, Y.; Wang, K. A robust SINS/VO integrated navigation algorithm based on RHCKF for unmanned ground vehicles. IEEE Access 2018, 6, 56828–56838. [Google Scholar] [CrossRef]
- Zhu, Y.; Cheng, X.; Hu, J.; Zhou, L.; Fu, J. A novel hybrid approach to deal with DVL malfunctions for underwater integrated navigation systems. Appl. Sci. 2017, 7, 759. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Cui, X.; Li, Y.; Ye, F. Performance enhancement of a USV INS/CNS/DVL integration navigation system based on an adaptive information sharing factor federated filter. Sensors 2017, 17, 239. [Google Scholar] [CrossRef] [Green Version]
- Kimball, P.; Rock, S. Sonar-based iceberg-relative navigation for autonomous underwater vehicles. Deep Sea Res. Part. II Top. Stud. Oceanogr. 2011, 58, 1301–1310. [Google Scholar] [CrossRef]
- Huang, H.; Chen, X.; Zhang, J. Weight self-adjustment Adams implicit filtering algorithm for attitude estimation applied to underwater gliders. IEEE Access 2016, 4, 5695–5709. [Google Scholar] [CrossRef]
- Daeipour, E.; Bar-Shalom, Y. An interacting multiple model approach for target tracking with glint noise. IEEE Trans. Aerosp. Electron. Syst. 1995, 31, 706–715. [Google Scholar] [CrossRef]
- Farrell, W.J. Interacting multiple model filter for tactical ballistic missile tracking. IEEE Trans. Aerosp. Electron. Syst. 2008, 44, 418–426. [Google Scholar] [CrossRef]
- Mazor, E.; Averbuch, A.; Bar-Shalom, Y.; Dayan, J. Interacting multiple model methods in target tracking: A survey. IEEE Trans. Aerosp. Electron. Syst. 1998, 34, 103–123. [Google Scholar] [CrossRef]
- Kirubarajan, T.; Bar-Shalom, Y.; Pattipati, K.R.; Kadar, I. Ground target tracking with variable structure IMM estimator. IEEE Trans. Aerosp. Electron. Syst. 2000, 36, 26–46. [Google Scholar] [CrossRef]
- Wang, L.; Li, S. Enhanced multi-sensor data fusion methodology based on multiple model estimation for integrated navigation system. Int. J. Control. Autom. Syst. 2018, 16, 295–305. [Google Scholar] [CrossRef]
- Hong, L. Multirate interacting multiple model filtering for target tracking using multirate models. IEEE Trans. Autom. Control. 1999, 44, 1326–1340. [Google Scholar] [CrossRef]
- Evans, J.S.; Evans, R.J. Image-enhanced multiple model tracking. Automatica 1999, 35, 1769–1786. [Google Scholar] [CrossRef]
- Dunne, D.; Kirubarajan, T. Multiple model multi-Bernoulli filters for manoeuvering targets. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 2679–2692. [Google Scholar] [CrossRef]
- Kim, Y.S.; Hong, K.S. An IMM algorithm with federated information mode-matched filters for AGV. Int. J. Adapt. Control Signal. Process. 2007, 21, 533–555. [Google Scholar] [CrossRef]
- Song, H.; Shin, V.; Jeon, M. Mobile node localization using fusion prediction-based interacting multiple model in cricket sensor network. IEEE Trans. Ind. Electron. 2011, 59, 4349–4359. [Google Scholar] [CrossRef]
- Lee, D.; Liu, C.; Liao, Y.-W.; Hedrick, J.K. Parallel interacting multiple model-based human motion prediction for motion planning of companion robots. IEEE Trans. Autom. Sci. Eng. 2016, 14, 52–61. [Google Scholar] [CrossRef]
Instruments | Parameters | Accuracy |
---|---|---|
SINS | three-axis gyro random constant drifts three-axis gyro random noise three-axis accelerometer random constant biases three-axis accelerometer random noise | 1.0°/h (1σ) 0.25°/h1/2 (1σ) 0.1 mg (1σ) 0.04 μg /Hz1/2 (1σ) |
Odometer | Velocity | 120 pulse/circle |
GNSS receiver | Position | 10 m (1σ) |
Parameter Errors | Federated Kalman Filter | Adaptive Federated Kalman Filter | Adaptive Federated IMM Filter | |||
---|---|---|---|---|---|---|
MAE | STD | MAE | STD | MAE | STD | |
Heading Angle (°) | 3.99 | 1.97 | 1.54 | 1.35 | 0.33 | 0.12 |
Pitch Angle (°) | 0.25 | 0.20 | 0.22 | 0.10 | 0.21 | 0.07 |
Roll Angle (°) | 0.14 | 0.23 | 0.14 | 0.13 | 0.13 | 0.07 |
East Velocity (m/s) | 0.23 | 0.59 | 0.14 | 0.34 | 0.02 | 0.22 |
North Velocity (m/s) | 0.14 | 0.60 | 0.05 | 0.30 | −0.02 | 0.25 |
Latitude (m) | −0.99 | 4.20 | −0.62 | 2.79 | −0.26 | 1.64 |
Longitude (m) | 4.58 | 11.68 | 2.76 | 7.79 | 0.78 | 3.97 |
Position (m) | 10.87 | 7.59 | 7.36 | 4.72 | 3.82 | 2.13 |
Filtering Methods | Time (s) |
---|---|
Federated Kalman Filter | 9.61 × 10−4 |
Adaptive Federated Kalman Filter | 9.72 × 10−4 |
Adaptive Federated IMM Filter | 2.96 × 10−3 |
Number | Federated Kalman Filter (m) | Adaptive Federated Kalman Filter (m) | Adaptive Federated IMM Filter (m) |
---|---|---|---|
1 | 10.87 | 7.36 | 3.82 |
2 | 13.06 | 9.51 | 4.23 |
3 | 11.87 | 8.43 | 4.06 |
4 | 10.12 | 7.14 | 3.35 |
5 | 14.42 | 10.67 | 4.78 |
6 | 10.07 | 8.11 | 3.24 |
7 | 11.25 | 7.68 | 3.89 |
8 | 13.43 | 9.95 | 5.21 |
9 | 11.98 | 8.51 | 4.09 |
10 | 10.49 | 7.04 | 3.26 |
11 | 10.86 | 7.56 | 3.08 |
12 | 13.65 | 10.04 | 5.33 |
13 | 15.51 | 11.27 | 4.56 |
14 | 12.90 | 7.57 | 3.18 |
15 | 11.35 | 7.84 | 3.77 |
16 | 12.57 | 9.21 | 4.39 |
17 | 11.87 | 8.64 | 3.31 |
18 | 10.76 | 7.45 | 2.89 |
19 | 12.30 | 8.93 | 4.41 |
20 | 15.83 | 10.94 | 5.42 |
21 | 11.74 | 8.87 | 4.60 |
22 | 10.18 | 7.16 | 3.14 |
23 | 9.59 | 7.03 | 3.91 |
24 | 10.94 | 7.81 | 4.07 |
25 | 10.89 | 8.10 | 4.35 |
26 | 9.75 | 7.23 | 3.57 |
27 | 13.70 | 11.25 | 5.04 |
28 | 11.66 | 7.59 | 4.11 |
29 | 10.52 | 7.14 | 3.36 |
30 | 11.78 | 8.10 | 4.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, W.; Cheng, X.; Wang, J. Adaptive Federated IMM Filter for AUV Integrated Navigation Systems. Sensors 2020, 20, 6806. https://doi.org/10.3390/s20236806
Lyu W, Cheng X, Wang J. Adaptive Federated IMM Filter for AUV Integrated Navigation Systems. Sensors. 2020; 20(23):6806. https://doi.org/10.3390/s20236806
Chicago/Turabian StyleLyu, Weiwei, Xianghong Cheng, and Jinling Wang. 2020. "Adaptive Federated IMM Filter for AUV Integrated Navigation Systems" Sensors 20, no. 23: 6806. https://doi.org/10.3390/s20236806
APA StyleLyu, W., Cheng, X., & Wang, J. (2020). Adaptive Federated IMM Filter for AUV Integrated Navigation Systems. Sensors, 20(23), 6806. https://doi.org/10.3390/s20236806