Fluorometric Detection of Thiamine Based on Hemoglobin–Cu3(PO4)2 Nanoflowers (NFs) with Peroxidase Mimetic Activity
"> Figure 1
<p>(<b>a</b>) IR spectra of CuSO<sub>4</sub> (green line), Hb (blue line) and Hb–Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> NFs (red line); (<b>b</b>) UV–vis absorptions of CuSO<sub>4</sub> (blue line), Hb (red line) and Hb–Cu<sub>3</sub>(PO<sub>4)2</sub> NFs (green line); (<b>c</b>) SEM image of Hb–Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> NFs; (<b>d</b>) Zeta potentials of CuSO<sub>4</sub>, Hb and Hb–Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> NFs.</p> "> Figure 2
<p>Fluorescence spectra of Na<sub>2</sub>HPO<sub>4</sub>-NaOH (pH 10) (black line), TH (red line), Hb–Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> NFs (light blue line), H<sub>2</sub>O<sub>2</sub>(dark green line), TH + H<sub>2</sub>O<sub>2</sub> (purple line), TH + Hb–Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> NFs (light green line), Hb–Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> NFs + H<sub>2</sub>O<sub>2</sub> (dark blue line), TH + H<sub>2</sub>O<sub>2</sub> + Hb–Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> NFs (brown line), TH + H<sub>2</sub>O<sub>2</sub> + Hb–Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> NFs + Tween 80 (pink line).</p> "> Figure 3
<p>The excitation and emission spectra for thiochrome.</p> "> Figure 4
<p>The optimization of experimental conditions: (<b>a</b>) reaction time and pH, (<b>b</b>) H<sub>2</sub>O<sub>2</sub> concentration, (<b>c</b>) Hb–Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> NF concentration and (<b>d</b>) the amount of Tween 80. Conditions: (<b>a</b>) H<sub>2</sub>O<sub>2</sub>, 1 × 10<sup>−3</sup> mol/L; Hb–Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> NFs, 2 mg/mL; thiamine, 1 × 10<sup>−3</sup> mol/L. (<b>b</b>) Hb–Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> NFs, 2 mg/mL; thiamine, 1 × 10<sup>−3</sup> mol/L; pH, 10; incubation time, 5 min. (<b>c</b>) H<sub>2</sub>O<sub>2</sub>, 1 × 10<sup>−3</sup> mol/L; thiamine, 1 × 10<sup>−3</sup> mol/L; pH, 10; incubation time, 5 min. (<b>d</b>) H<sub>2</sub>O<sub>2</sub>, 1 × 10<sup>−3</sup> mol/L; Hb–Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> NFs, 2 mg/mL; thiamine, 1 × 10<sup>−3</sup> mol/L; pH, 10; incubation time, 5 min.</p> "> Figure 5
<p>Fluorescence intensity change of the solutions containing Hb–Cu<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> NFs upon the addition of different concentrations of thiamine (5 × 10<sup>−9</sup> to 5 × 10<sup>−4</sup> mol/L). The inset shows the linear calibration plot for TH. Error bar: RSD (<span class="html-italic">n</span> = 3).</p> "> Figure 6
<p>Interference study for the determination of thiamine. Concentrations of Na<sup>+</sup>, K<sup>+</sup>, HCO<sub>3</sub><sup>-</sup>, Cl<sup>-</sup>, glucose, starch, Vc, VB<sub>7</sub>, VB<sub>2</sub> and VB<sub>9</sub>: 30 μg/mL. Inset: the amplified fluorescence intensity of Na<sup>+</sup>, K<sup>+</sup>, HCO<sub>3</sub><sup>-</sup>, Cl<sup>-</sup>, glucose, starch, Vc and VB<sub>7</sub>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Instrument
2.3. Synthesis of Hb–Cu3(PO4)2 NFs
2.4. Detection of Reactive Hydroxyl Radical (·OH) Production
2.5. Enzyme-like Activity and Kinetic Parameter of Hb–Cu3(PO4)2 NFs
2.6. Condition Optimization
2.7. Fluorescent Detection of Thiamine
3. Results and Discussion
3.1. Characterization of Hb–Cu3(PO4)2 NFs
3.2. Enzyme-Like Activities and Kinetic Parameters of Hb–Cu3(PO4)2 NFs
3.3. Condition Optimization
3.3.1. Effect of pH and Reaction Time
3.3.2. Effect of H2O2 Concentration
3.3.3. Effect of Hb–Cu3(PO4)2 NF Concentration
3.3.4. Effect of Tween 80 Concentration
3.4. Calibration Curve for Thiamine Detection
3.5. Determination of Thiamine in Functional Food Tablet Samples
3.6. Interference Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Y. Simultaneous determination of uric acid, xanthine and hypoxanthine at poly(pyrocatechol violet)/functionalized multi-walled carbon nanotubes composite film modified electrode. Colloid Surf. B 2011, 88, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Jin, S.O.; Lee, S.H.; Chung, H.Y. Spectrofluorimetric determination of vitamin B1 using horseradish peroxidase as catalyst in the presence of hydrogen peroxide. Luminescence 2009, 24, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tian, F. Enzymatic Catalytic Spectrophotometric Determination of Thiamine in Food. Food Anal. Method 2009, 3, 7–11. [Google Scholar] [CrossRef]
- Vignisse, J.; Sambon, M.; Gorlova, A.; Pavlov, D.; Caron, N.; Malgrange, B.; Shevtsova, E.; Svistunov, A.; Anthony, D.C.; Markova, N.; et al. Thiamine and benfotiamine prevent stress-induced suppression of hippocampal neurogenesis in mice exposed to predation without affecting brain thiamine diphosphate levels. Mol. Cell Neurosci. 2017, 82, 126–136. [Google Scholar] [CrossRef]
- Stoffel, S.A.; Rodenko, B.; Schweingruber, A.M.; MäSer, P.; de Koning, H.P.; Schweingruber, M.E. Biosynthesis and uptake of thiamine (vitamin B1) in bloodstream form Trypanosoma brucei brucei and interference of the vitamin with melarsen oxide activity. Int. J. Parasitol. 2006, 36, 229–236. [Google Scholar] [CrossRef]
- Shankar, S.; John, S.A. Sensitive and highly selective determination of vitamin B1 in the presence of other vitamin B complexes using functionalized gold nanoparticles as fluorophore. RSC Adv. 2015, 5, 49920–49925. [Google Scholar] [CrossRef]
- Gong, F.; Zou, W.; Wang, Q.; Deng, R.; Cao, Z.; Gu, T. Polymer nanoparticles integrated with excited-state intramolecular proton transfer-fluorescent modules as sensors for the detection of vitamin B1. Microchem. J. 2019, 148, 767–773. [Google Scholar] [CrossRef]
- Gupta, R.K.; Yadav, S.K.; Saraswat, V.A.; Rangan, M.; Srivastava, A.; Yadav, A.; Trivedi, R.; Yachha, S.K.; Rathore, R.K. Thiamine deficiency related microstructural brain changes in acute and acute-on-chronic liver failure of non-alcoholic etiology. Clin. Nutr. 2012, 31, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Zera, K.; Zastre, J. Stabilization of the hypoxia-inducible transcription Factor-1 alpha (HIF-1α) in thiamine deficiency is mediated by pyruvate accumulation. Toxicol. Appl. Pharmacol. 2018, 355, 180–188. [Google Scholar] [CrossRef]
- Rocha, F.R.P.; Fatibello, O.; Reis, B.F. A multicommuted flow system for sequential spectrophotometric determination of hydrosoluble vitamins in pharmaceutical preparations. Talanta 2003, 59, 191–200. [Google Scholar] [CrossRef]
- Rebwar, O.H.; Hunar, Y.M.; Hijran, S.J. Simultaneous spectrophotometric determination of thiamine and pyridoxine in multivitamin dosage forms using H-point standard addition and Vierodta’s methods. J. Iran. Chem. Soc. 2018, 15, 1603–1612. [Google Scholar] [CrossRef]
- Du, J.X.; Li, Y.H.; Lu, J.R. Flow injection chemiluminescence determination of thiamine based on its enhancing effect on the luminol-hydrogen peroxide system. Talanta 2002, 57, 661–665. [Google Scholar] [CrossRef]
- Chen, J.; Li, B.Q.; Cui, Y.Q.; Yu, E.; Zhai, H.L. A fast and effective method of quantitative analysis of VB1, VB2 and VB6 in B-vitamins complex tablets based on three-dimensional fluorescence spectra. J. Food Compos. Anal. 2015, 41, 122–128. [Google Scholar] [CrossRef]
- Lynch, P.L.M.; Young, I.S. Determination of thiamine by high-performance liquid chromatography. J. Chromatogr. A 2000, 881, 267–284. [Google Scholar] [CrossRef]
- Alizadeh, T.; Akhoundian, M.; Ganjali, M.R. An innovative method for synthesis of imprinted polymer nanomaterial holding thiamine (vitamin B1) selective sites and its application for thiamine determination in food samples. J. Chromatogr. B 2018, 1084, 166–174. [Google Scholar] [CrossRef]
- Perez-Ruiz, T.; Martinez-Lozano, C.; Sanz, A.; Guillen, A. Successive determination of thiamine and ascorbic acid in pharmaceuticals by flow injection analysis. J. Pharmaceut. Biomed. Anal. 2004, 34, 551–557. [Google Scholar] [CrossRef]
- Luo, Y.W.; Miao, H.; Yang, X.M. Glutathione-stabilized Cu nanoclusters as fluorescent probes for sensing pH and vitamin B1. Talanta 2015, 144, 488–495. [Google Scholar] [CrossRef]
- Barrales, P.O.; Vidal, A.D.; de Cordova, M.L.F.; Diaz, A.M. Simultaneous determination of thiamine and pyridoxine in pharmaceuticals by using a single flow-through biparameter sensor. J. Pharm. Biomed. Anal. 2001, 25, 619–630. [Google Scholar] [CrossRef]
- Akyilmaz, E.; Yasa, I.; Dinckaya, E. Whole cell immobilized amperometric biosensor based on Saccharomyces cerevisiae for selective determination of vitamin B1 (thiamine). Anal. Biochem. 2006, 354, 78–84. [Google Scholar] [CrossRef]
- Sinduja, B.; John, S.A. Highly selective naked eye detection of vitamin B1 in the presence of other vitamins using graphene quantum dots capped gold nanoparticles. New J. Chem. 2019, 43, 2111–2117. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, T.; Wu, X.; Yang, G.J.S. Oxygen Vacancy-Engineered PEGylated MoO3-x Nanoparticles with Superior Sulfite Oxidase Mimetic Activity for Vitamin B1 Detection. Small 2019, 15, 46. [Google Scholar] [CrossRef]
- Ge, J.; Lei, J.D.; Zare, R.N. Protein-inorganic hybrid nanoflowers. Nat. Nanotechnol. 2012, 7, 428–432. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Ran, X.; Lin, Y.H.; Ren, J.S.; Qu, X.G. Self-assembly of an organic-inorganic hybrid nanoflower as an efficient biomimetic catalyst for self-activated tandem reactions. Chem. Commun. 2015, 51, 4386–4389. [Google Scholar] [CrossRef]
- Gao, J.; Liu, H.; Pang, L.; Guo, K.; Li, J. Biocatalyst and Colorimetric/Fluorescent Dual Biosensors of H2O2 Constructed via Hemoglobin-Cu3(PO4)2 Organic/Inorganic Hybrid Nanoflowers. ACS Appl. Mater. Inter. 2018, 10, 30441–30450. [Google Scholar] [CrossRef]
- Lin, Z.; Xiao, Y.; Yin, Y.Q.; Hu, W.L.; Liu, W.; Yang, H.H. Facile Synthesis of Enzyme-Inorganic Hybrid Nanoflowers and Its Application as a Colorimetric Platform for Visual Detection of Hydrogen Peroxide and Phenol. ACS Appl. Mater. Inter. 2014, 6, 10775–10782. [Google Scholar] [CrossRef]
- Tian, R.; Zhang, B.Y.; Zhao, M.M.; Zou, H.J.; Zhang, C.H.; Qi, Y.F.; Ma, Q. Fluorometric enhancement of the detection of H2O2 using different organic substrates and a peroxidase-mimicking polyoxometalate. RSC Adv. 2019, 9, 12209–12217. [Google Scholar] [CrossRef] [Green Version]
- Tian, R.; Zhang, B.Y.; Zhao, M.M.; Ma, Q.; Qi, Y.F. Polyoxometalates as promising enzyme mimics for the sensitive detection of hydrogen peroxide by fluorometric method. Talanta 2018, 188, 332–338. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Zhao, M.M.; Qi, Y.F.; Tian, R.; Carter, B.B.; Zou, H.J.; Zhang, C.H.; Wang, C.Y. The Intrinsic Enzyme Activities of the Classic Polyoxometalates. Sci. Rep. 2019, 9, 1. [Google Scholar] [CrossRef]
- Sun, J.; Li, C.; Qi, Y.; Guo, S.; Liang, X.J.S. Optimizing Colorimetric Assay Based on V2O5 Nanozymes for Sensitive Detection of H2O2 and Glucose. Sensors 2016, 16, 584. [Google Scholar] [CrossRef] [Green Version]
- Tian, R.; Sun, J.H.; Qi, Y.F.; Zhang, B.Y.; Guo, S.L.; Zhao, M.M. Influence of VO2 Nanoparticle Morphology on the Colorimetric Assay of H2O2 and Glucose. Nanomaterials 2017, 7, 347. [Google Scholar] [CrossRef] [Green Version]
- Krstonosic, V.; Milanovic, M.; Dokic, L. Application of different techniques in the determination of xanthan gum-SDS and xanthan gum-Tween 80 interaction. Food Hydrocoll. 2019, 87, 108–118. [Google Scholar] [CrossRef]
- Kreuter, J. Influence of the Surface Properties on Nanoparticle-Mediated Transport of Drugs to the Brain. J. Nanosci. Nanotechnol. 2004, 4, 484–488. [Google Scholar] [CrossRef]
- Garcia-Herrero, V.; Torrado-Salmeron, C.; Garcia-Rodriguez, J.J.; Torrado, G.; Torrado-Santiago, S. Submicellar liquid chromatography with fluorescence detection improves the analysis of naproxen in plasma and brain tissue. J. Sep. Sci. 2019, 42, 1702–1709. [Google Scholar] [CrossRef]
- Zawaneh, A.H.; Khalil, N.N.; Ibrahim, S.A.; Al-Dafiri, W.N.; Maher, H.M. Micelle-enhanced direct spectrofluorimetric method for the determination of linifanib: Application to stability studies. Luminescence 2017, 32, 1162–1168. [Google Scholar] [CrossRef]
- Abd El-Hay, S.S.; Belal, F.F. Development of a micelle-enhanced high-throughput fluorometric method for determination of niclosamide using a microplate reader. Luminescence 2019, 34, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Edwards, K.A.; Randall, E.A.; Tu-Maung, N.; Sannino, D.R.; Feder, S.; Angert, E.R.; Kraft, C.E. Periplasmic binding protein-based magnetic isolation and detection of thiamine in complex biological matrices. Talanta 2019, 205, 120168. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, H.Y.; Li, H.X.; Pan, S.; Ran, Y.L.; Hu, X.L. Construction of a novel turn-on-off fluorescence sensor used for highly selective detection of thiamine via its quenching effect on o-phen-Zn2+ complex. Luminescence 2018, 33, 1128–1135. [Google Scholar] [CrossRef]
- Tan, H.L.; Li, Q.; Zhou, Z.C.; Ma, C.J.; Song, Y.H.; Xu, F.G.; Wang, L. A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity. Anal. Chim. Acta 2015, 856, 90–95. [Google Scholar] [CrossRef]
- Purbia, R.; Paria, S. A simple turn on fluorescent sensor for the selective detection of thiamine using coconut water derived luminescent carbon dots. Biosens. Bioelectron. 2016, 79, 467–475. [Google Scholar] [CrossRef]
- Perez-Ruiz, T.; Martinez-Lozano, C.; Tomas, V.; Ibarra, I.J.T. Flow injection fluorimetric determination of thiamine and copper based on the formation of thiochrome. Talanta 1992, 39, 907. [Google Scholar] [CrossRef]
System | Linear Range | Detection Limit | Reference |
---|---|---|---|
TBP/IMS/FRET | 5–240 nM | 2 nmol/g | [36] |
e-PNPs/ESIPT | 0.1–25 μM | 2.6 nM | [7] |
O-phen/Zn2+ | 0.84–80.0 μM | 0.25 μM | [37] |
HKUST-1 | 4–700 μM | 1 μM | [38] |
C-dots/Cu2+ | 10–50 μM | 0.28 nM | [39] |
HRP | 0.08–49.90 μM | 0.04 μM | [2] |
Cu2+ | 0.89–17.85 μM | 0.50 μM | [40] |
Hb–Cu3(PO4)2 NFs | 0.05–50 μM | 0.048 μM | This work |
Sample | Added (μM) | Detected (μM) | Recovery (%) |
---|---|---|---|
1 | 25 | 25.8 ± 4.35 | 103.2 |
2 | 0.50 | 0.57 ± 0.03 | 115.2 |
3 | 0.25 | 0.27 ± 0.19 | 107.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, H.; Zhang, Y.; Zhang, C.; Sheng, R.; Zhang, X.; Qi, Y. Fluorometric Detection of Thiamine Based on Hemoglobin–Cu3(PO4)2 Nanoflowers (NFs) with Peroxidase Mimetic Activity. Sensors 2020, 20, 6359. https://doi.org/10.3390/s20216359
Zou H, Zhang Y, Zhang C, Sheng R, Zhang X, Qi Y. Fluorometric Detection of Thiamine Based on Hemoglobin–Cu3(PO4)2 Nanoflowers (NFs) with Peroxidase Mimetic Activity. Sensors. 2020; 20(21):6359. https://doi.org/10.3390/s20216359
Chicago/Turabian StyleZou, Hangjin, Yang Zhang, Chuhan Zhang, Rongtian Sheng, Xinming Zhang, and Yanfei Qi. 2020. "Fluorometric Detection of Thiamine Based on Hemoglobin–Cu3(PO4)2 Nanoflowers (NFs) with Peroxidase Mimetic Activity" Sensors 20, no. 21: 6359. https://doi.org/10.3390/s20216359