A Nanostructure with Defect Based on Fano Resonance for Application on Refractive-Index and Temperature Sensing
<p>2D schematic of the designed structure.</p> "> Figure 2
<p>2D schematic of (<b>a</b>) single stub structure; (<b>b</b>) single CRCS structure; (<b>c</b>) Transmission spectra of the single stub structure (green line), single CRCS structure (blue line), and complete structure (black line).</p> "> Figure 3
<p>Transmission spectra of structures with diverse angle between horizontal axis and centerline of the stub on CRCS.</p> "> Figure 4
<p>Transmission spectra of the 45° structure and 90° structure. The normalized H<sub>Z</sub> field distributions at their dips are depicted in the inset.</p> "> Figure 5
<p>(<b>a</b>) Transmission spectra of 90° structure in diverse refractive-index; (<b>b</b>) transmission spectra of 45° structure in diverse refractive-index; (<b>c</b>) fitting line of sensitivity at D, D1, D2.</p> "> Figure 6
<p>(<b>a</b>) Transmission spectra for diverse outer radius of CRCS; (<b>b</b>) fitting line of sensitivity at D1; (<b>c</b>) fitting line of sensitivity at D2; (<b>d</b>) the variation of FWHM with the rising of outer radius of CRCS.</p> "> Figure 7
<p>Transmission spectra for (<b>a</b>) diverse length of stub on CRCS; (<b>b</b>) diverse width of stub on CRCS; (<b>c</b>) diverse coupling gap.</p> "> Figure 8
<p>(<b>a</b>) Transmission spectra for diverse height of stub on bus waveguide; (<b>b</b>) the varying FWHM with rising of height of stub on bus waveguide; (<b>c</b>) transmission spectra for diverse width of stub on bus waveguide; (<b>d</b>) the varying FWHM with rising of width of stub on bus waveguide.</p> "> Figure 8 Cont.
<p>(<b>a</b>) Transmission spectra for diverse height of stub on bus waveguide; (<b>b</b>) the varying FWHM with rising of height of stub on bus waveguide; (<b>c</b>) transmission spectra for diverse width of stub on bus waveguide; (<b>d</b>) the varying FWHM with rising of width of stub on bus waveguide.</p> "> Figure 9
<p>(<b>a</b>) Transmission spectra of diverse temperature; (<b>b</b>) the fitting line of sensitivity at D1 and D2.</p> ">
Abstract
:1. Introduction
2. Geometry Model and Analysis Method
3. Simulations and Results
4. The Application of the Presented Structure on Temperature Sensing
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, W.; Chau, Y.F.C.; Jheng, S.C. Analysis of transmittance properties of surface plasmon modes on periodic solid/outline bowtie nanoantenna arrays. Phys. Plasmas 2013, 20, 064503. [Google Scholar] [CrossRef]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Gramotnev, D.K.; Bozhevolnyi, S.I. Plasmonics beyond the diffraction limit. Nat. Photonics 2010, 4, 83–91. [Google Scholar] [CrossRef]
- Bozhevolnyi, S.I.; Volkov, V.S.; Devaux, E.; Laluet, J.Y.; Ebbesen, T.W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 2006, 440, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Qiu, T.; Li, J.; Chu, P.K. Plasmonic nano-lasers. Nano Energy 2012, 1, 25–41. [Google Scholar] [CrossRef]
- Chen, P.; Liang, R.; Huang, Q. Plasmonic filters and optical directional couplers based on wide metal-insulator-metal structure. Opt. Express 2011, 19, 7633–7639. [Google Scholar] [CrossRef]
- Neutens, P.; Lagae, L.; Borghs, G.; Dorpe, P.V. Plasmon filters and resonators in metal-insulator-metal waveguides. Opt. Express 2012, 20, 3408–3423. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.; Lee, C. Optical nanofilters based on meta-atom side-coupled plasmonics metal-insulator-metal waveguides. J. Lightwave Technol. 2013, 31, 2876–2880. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Huang, X.G.; Lin, X.; Zhang, Q.; Jin, X. A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure. Opt. Express 2009, 17, 13989–13994. [Google Scholar] [CrossRef]
- Fang, M.; Shi, F.; Chen, Y. Unidirectional all-Optical absorption switch based on optical tamm state in nonlinear plasmonic waveguide. Plasmonics 2016, 11, 197–203. [Google Scholar] [CrossRef]
- Tao, J.; Wang, Q.; Huang, X. All-Optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 2011, 6, 753–759. [Google Scholar] [CrossRef]
- Veronis, G.; Fan, S. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl. Phys. Lett. 2005, 87, 131102. [Google Scholar] [CrossRef]
- Tian, J.; Yang, R.; Song, L. Optical properties of a Y-Splitter based on hybrid multilayer plasmonic waveguide. IEEE J. Quantum Electron. 2014, 50, 898–903. [Google Scholar] [CrossRef]
- Wang, L.; Zeng, Y.; Wang, Z. A refractive index sensor based on an analogy T shaped metal–insulator–metal waveguide. Optik 2018, 172, 1199–1204. [Google Scholar] [CrossRef]
- Xu, L.; Wang, S.; Wu, L. Refractive Index Sensing Based on Plasmonic Waveguide Side Coupled With Bilaterally Located Double Cavities. IEEE Trans. Nanotechnol. 2014, 13, 875–880. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, M.; Zhao, X. Refractive Index Sensor Based on a Metal–Insulator–Metal Waveguide Coupled with a Symmetric Structure. Sensors 2017, 17, 2879. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Huang, Y.; Xu, W. A plasmonic temperature sensing structure based on dual laterlly side-coupled hexagonal cavities. Sensors 2016, 16, 706. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Zhang, Z.; Yan, S. Tunable Fano resonance in asymmetric mim waveguide structure. Sensors 2017, 17, 1494. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Hu, R.; Cui, L.N.; Yu, L.; Wang, L.L.; Xiao, J.H. Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems. Opt. Commun. 2014, 320, 6–11. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, L.; Xue, C. Fano Resonance Based on Metal-Insulator-Metal Waveguide-Coupled Double Rectangular Cavities for Plasmonic Nanosensors. Sensors 2016, 16, 642. [Google Scholar] [CrossRef] [Green Version]
- Yun, B.; Hu, G.; Zhang, R. Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator. J. Opt. 2016, 18, 55002. [Google Scholar]
- Zhou, J.; Zhang, Z. Transmission and refractive index sensing based on Fano resonance in MIM waveguide-coupled trapezoid cavity. AIP Adv. 2017, 7, 15020. [Google Scholar] [CrossRef] [Green Version]
- Pang, S.; Huo, Y.; Xie, Y.; Hao, L. Fano resonance in MIM waveguide structure with oblique rectangular cavity and its application in sensor. Opt. Commun. 2016, 381, 409–413. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Li, H. Two kinds of double Fano resonances induced by an asymmetric MIM waveguide structure. J. Opt. 2016, 18, 65001. [Google Scholar] [CrossRef]
- Yi, X.; Tian, J.; Yang, R. Tunable Fano resonance in MDM stub waveguide coupled with a U-shaped cavity. Eur. Phys. J. D 2018, 72, 60. [Google Scholar] [CrossRef]
- Wu, T.; Liu, Y.; Yu, Z.; Peng, Y.; Shu, C.; He, H. The sensing characteristics of plasmonic waveguide with a single defect. Opt. Commun. 2014, 323, 44–48. [Google Scholar] [CrossRef]
- Chen, Z.; Song, X.; Duan, G.; Wang, L.; Yu, L. Multiple Fano Resonances Control in MIM Side-Coupled Cavities Systems. IEEE Photonics J. 2015, 7, 1–10. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, L.; Wang, L.; Duan, G.; Xiao, J. Sharp asymmetric line shapes in a plasmonic waveguide system and its application in nanosensor. J. Lightwave Technol. 2015, 33, 1. [Google Scholar] [CrossRef]
- Zia, R.; Schuller, J.A.; Chandran, A.; Brongersma, M.L. Plasmonics: The next chip-scale technology. Mater. Today 2006, 9, 20–27. [Google Scholar] [CrossRef]
- Zhou, W.; Li, K.; Song, C.; Hao, P.; Chi, M.; Yu, M.; Wu, Y. Polarization-independent and omnidirectional nearly perfect absorber with ultra-thin 2D subwavelength metal grating in the visible region. Opt. Express 2015, 23, 413–418. [Google Scholar] [CrossRef]
- Park, J.; Kim, K.Y.; Lee, I.M.; Na, H.; Lee, S.Y.; Lee, B. Trapping light in plasmonic waveguides. Opt. Express 2010, 18, 598–623. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Wei, Q.; Liu, C.; Wang, S. Nanoscale temperature sensor based on Fano resonance in metal–insulator–metal waveguide. Opt. Commun. 2017, 384, 85–88. [Google Scholar] [CrossRef]
- Dionne, J.A.; Sweatlock, L.A.; Atwater, H.A.; Polman, A. Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 2006, 73, 035407. [Google Scholar] [CrossRef] [Green Version]
- Kekatpure, R.D.; Hryciw, A.C.; Barnard, E.S.; Brongersma, M.L. Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator. Opt. Express 2009, 17, 24112–24129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, K.M.; Hafner, J.H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Hua, E.; Su, H.; Guo, J.; Yan, S. A Nanostructure with Defect Based on Fano Resonance for Application on Refractive-Index and Temperature Sensing. Sensors 2020, 20, 4125. https://doi.org/10.3390/s20154125
Yang X, Hua E, Su H, Guo J, Yan S. A Nanostructure with Defect Based on Fano Resonance for Application on Refractive-Index and Temperature Sensing. Sensors. 2020; 20(15):4125. https://doi.org/10.3390/s20154125
Chicago/Turabian StyleYang, Xiaoyu, Ertian Hua, Hao Su, Jing Guo, and Shubin Yan. 2020. "A Nanostructure with Defect Based on Fano Resonance for Application on Refractive-Index and Temperature Sensing" Sensors 20, no. 15: 4125. https://doi.org/10.3390/s20154125