Dynamic Absorption Enhancement and Equivalent Resonant Circuit Modeling of Tunable Graphene-Metal Hybrid Antenna
<p>Complex graphene conductivity and permittivity with increasing chemical potential from 0.1 eV to 0.4 eV, (<b>a</b>) real part of graphene conductivity, (<b>b</b>) Imaginary part of graphene conductivity. (<b>c</b>) The real permittivity of multilayer graphene, and (<b>d</b>) Imaginary permittivity of multilayer graphene.</p> "> Figure 2
<p>Proposed geometry of graphene-metal hybrid nanoantenna. (<b>a</b>) Top view of the graphene stack antenna, as the antenna is illuminated by THz light in the frequency range of 30–34 THz and is incident on the surface of antenna parallel to the z-axis, (<b>b</b>) layered view of the antenna structure, as the antenna structure is composed of eight-layers, i.e., three-layers of substrates, two graphene stacks, a gold layer, and graphene reflector, and (<b>c</b>) gating of the proposed antenna by applying a voltage across graphene sheets for the tuning of Fermi energy in the range of 0.1 eV–0.3 eV.</p> "> Figure 3
<p>(<b>a</b>) Partial element equivalent circuit (PEEC) rectangular cell circuit model for graphene patch, where Vg represents the external bias voltage due to applied external electric field, Lm denotes the self-inductance, Rr, Lr and Zinter is due to graphene complex surface conductivity; and, (<b>b</b>) Unit cell model for the stacked graphene, where the two branches share the same node.</p> "> Figure 4
<p>(<b>a</b>) Transmission line model of the graphene-metal antenna; (<b>b</b>) Equivalent RLC resonant circuit model of the hybrid antenna derived from the corresponding transmission line model.</p> "> Figure 5
<p>(<b>a</b>) Reflection coefficient of the proposed graphene-metal antenna and the effect of stacking symmetry on the <span class="html-italic">S</span><sub>11</sub>; and, (<b>b</b>) Input impedance Real and Imaginary part corresponding to the resonance frequencies of stacking symmetry.</p> "> Figure 6
<p>(<b>a</b>) Reflection coefficient of the proposed graphene-metal antenna with varying chemical potential ranging from 0 eV to 0.3 eV; (<b>b</b>) Reflection phases of <span class="html-italic">S</span><sub>11</sub> with varying chemical potential; (<b>c</b>) Tuning of chemical potential with respect to varying gate voltage; and, (<b>d</b>) three-dimensional (3D) graph of resonance frequency tuning with respect to chemical potential and relaxation time.</p> "> Figure 6 Cont.
<p>(<b>a</b>) Reflection coefficient of the proposed graphene-metal antenna with varying chemical potential ranging from 0 eV to 0.3 eV; (<b>b</b>) Reflection phases of <span class="html-italic">S</span><sub>11</sub> with varying chemical potential; (<b>c</b>) Tuning of chemical potential with respect to varying gate voltage; and, (<b>d</b>) three-dimensional (3D) graph of resonance frequency tuning with respect to chemical potential and relaxation time.</p> "> Figure 7
<p>(<b>a</b>) Resonant frequency tuning with increasing graphene layers in the stack; and, (<b>b</b>) Effect of the relaxation time on the reflection coefficient.</p> "> Figure 8
<p>(<b>a</b>) <span class="html-italic">S</span><sub>11</sub> with respect to the increasing size of the gold hexagon; and, (<b>b</b>) Resonance tuning of the proposed antenna by decreasing the thickness of the metallic layer.</p> "> Figure 9
<p>(<b>a</b>) Effect of the increasing substrate thickness on the resonance frequency; and, (<b>b</b>) The effect of increasing substrate permittivity on graphene antenna performance.</p> "> Figure 10
<p>Resonance frequency response with respect to four different transverse magnetic (TM) Characteristic modes.</p> "> Figure 11
<p>The real and imaginary input impedance at four different characteristic modes.</p> "> Figure 12
<p>The real and imaginary input admittance at four different characteristic modes.</p> "> Figure 13
<p>Radiation efficiency corresponding to characteristic modes.</p> "> Figure 14
<p>(<b>a</b>) Absorption spectra with graphene layers, (<b>b</b>) Absorption spectra tuning with chemical potential, (<b>c</b>) Effect of relaxation time on absorption, (<b>d</b>) Tuning of absorption spectra by increasing hexagon size, and, (<b>e</b>) Comparison of the simulated absorption, Scattering and extinction of the antenna at the resonance frequency, i.e., 33 THz with the graphene Fermi energy tuned to 0.3 eV. The black line represents the scattering magnitude, which is far lower than the absorption magnitude, thus validating the proposed structure has the ability to absorbs the maximum portion of the incident light.</p> "> Figure 14 Cont.
<p>(<b>a</b>) Absorption spectra with graphene layers, (<b>b</b>) Absorption spectra tuning with chemical potential, (<b>c</b>) Effect of relaxation time on absorption, (<b>d</b>) Tuning of absorption spectra by increasing hexagon size, and, (<b>e</b>) Comparison of the simulated absorption, Scattering and extinction of the antenna at the resonance frequency, i.e., 33 THz with the graphene Fermi energy tuned to 0.3 eV. The black line represents the scattering magnitude, which is far lower than the absorption magnitude, thus validating the proposed structure has the ability to absorbs the maximum portion of the incident light.</p> "> Figure 15
<p>Absorption tuning and the corresponding E-field distribution to incidence angles 0°–30°.</p> "> Figure 16
<p>Absorption tuning and the corresponding E-field distribution to incidence angles 45°–90°.</p> "> Figure 17
<p>(<b>a</b>) Electric field intensity at the center gap of the antenna with incidence angle, and (<b>b</b>) Electric field intensity at the top surface of the antenna with respect to incidence angle.</p> "> Figure 18
<p>(<b>a</b>) Comparison of equivalent circuit model and CST results; and, (<b>b</b>) Inductance tuning resonance response of the equivalent circuit model.</p> "> Figure 19
<p>(<b>a</b>) Coupling coefficient behavior with increasing relaxation time; and, (<b>b</b>) Corresponding quality factor response with different relaxation times.</p> ">
Abstract
:1. Introduction
2. Modeling of Graphene Surface Conductivity
2.1. Extraction of Multi-layer Graphene Stack Conductivity
2.2. Effect of Chemical Potential on Graphene Conductivity & Permittivity
3. Hybrid Graphene-Metal Antenna Designing Theory
4. Equivalent Circuit Modeling of Graphene-Metal Stack Antenna
4.1. Circuit Model of Graphene Hexagone
4.2. Resonant Frequency Calculation of Graphene Hexagone Based on PEEC Circuit Model
4.3. Equivalent RLC Resonant Circuit Model of Graphene-Metal Stacked Antenna
5. Simulation Results and Discussion
5.1. Surface Plasmon Resonance
5.2. Effect of Chemical Potential On Resonance Frequency
5.3. Frequency Response of the Antenna with Respect to Parametric Optimization
5.3.1. Effect of Gold Hexagon Size and Thickness
5.3.2. Effect of the Dielectric Substrate on the Performance of Graphene-Metal Antenna
5.4. Characteristic Mode Analysis
5.4.1. Input Impedance Analysis with Characteristic Mode
5.4.2. Modal Input Admittance and Radiation Efficiency
5.5. Tunability and Enhancement of Optical Absorption
5.5.1. Unity Absorption Tunability and Electric Field Distribution
5.5.2. Electric Field Enhancement
5.6. Validation of Numerical Simulations with Equivalent Circuit Model Results
6. Technological Realization
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- He, S.; Chen, T. Broadband THz absorbers with graphene-based anisotropic metamaterial films. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 757–763. [Google Scholar] [CrossRef]
- Wang, X.; Liu, G.; Xia, S.; Meng, H.; Shang, X.; He, P.; Zhai, X. Dynamically Tunable Fano Resonance Based on Graphene Metamaterials. IEEE Photonics Technol. Lett. 2018, 30, 2147–2150. [Google Scholar] [CrossRef]
- Baqir, M.A.; Choudhury, P.K.; Farmani, A.; Younas, T.; Arshad, J.; Mir, A.; Karimi, S. Tunable plasmon induced transparency in graphene and hyperbolic metamaterial-based structur. IEEE Photonics J. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Zainud-Deen, S.H.; Mabrouk, A.M.; Malhat, H.A. Frequency tunable graphene metamaterial reflectarray for terahertz applications. J. Eng. 2018, 2018, 753–761. [Google Scholar] [CrossRef]
- Mishra, R.; Sahu, A.; Panwar, R. Cascaded Graphene Frequency Selective Surface Integrated Tunable Broadband Terahertz Metamaterial Absorber. IEEE Photonics J. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Chen, P.Y.; Alu, A. Terahertz metamaterial devices based on graphene nanostructures. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 748–756. [Google Scholar] [CrossRef]
- Chorsi, H.T.; Gedney, S.D. Tunable Plasmonic Optoelectronic Devices Based on Graphene Metasurfaces. IEEE Photonics Technol. Lett. 2017, 29, 228–230. [Google Scholar] [CrossRef]
- Liu, T.; Yi, Z.; Xiao, S. Active Control of Near-Field Coupling in a Terahertz Metal-Graphene Metamaterial. IEEE Photonics Technol. Lett. 2017, 29, 1998–2001. [Google Scholar] [CrossRef]
- Arezoomandan, S.; Gopalan, P.; Tian, K.; Chanana, A.; Nahata, A.; Tiwari, A.; Sensale-Rodriguez, B. Tunable Terahertz Metamaterials Employing Layered 2-D Materials beyond Graphene. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 188–194. [Google Scholar] [CrossRef]
- Majeed, F.; Shahpari, M.; Thiel, D.V. Pole-zero analysis and wavelength scaling of carbon nanotube antennas. Int. J. RF Microw. Comput. Aided Eng. 2017, 27, e21103. [Google Scholar] [CrossRef]
- Yu, X.; Gao, X.; Qiao, W.; Wen, L.; Yang, W. Broadband Tunable Polarization Converter Realized by Graphene-Based Metamaterial. IEEE Photonics Technol. Lett. 2016, 28, 2399–2402. [Google Scholar] [CrossRef]
- Premkumar, N.; Xu, Y.; Lail, B. 2D infrared phased array leaky-wave antenna. In Proceedings of the 2016 IEEE Antennas and Propagation Society International Symposium, APSURSI 2016, Fajardo, Puerto Rico, 26 June–1 July 2016; pp. 401–402. [Google Scholar]
- Cao, S.; Wang, T.; Sun, Q.; Tang, Y.; Hu, B.; Levy, U.; Yu, W. Graphene-Silver Hybrid Metamaterial for Tunable and High Absorption at Mid-Infrared Waveband. IEEE Photonics Technol. Lett. 2018, 30, 475–478. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, B.; Raglione, M.; Wang, H.; Li, B.; Toor, F.; Arnold, M.A.; Ding, H. Design, Fabrication, and Modulation of THz Bandpass Metamaterials. Laser Photonics Rev. 2019, 13, 1–22. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, H.D.; Choi, H.J.; Kang, B.; Cho, Y.R.; Min, B. Broadband modulation of terahertz waves with non-resonant graphene meta-devices. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 764–771. [Google Scholar] [CrossRef]
- Charola, S.; Patel, S.K.; Parmar, J.; Ladumor, M.; Dhasarathan, V. Broadband graphene-based metasurface solar absorber. Microw. Opt. Technol. Lett. 2019, 62, 1–8. [Google Scholar] [CrossRef]
- Scidà, A.; Haque, S.; Treossi, E.; Robinson, A.; Smerzi, S.; Ravesi, S.; Borini, S.; Palermo, V. Application of graphene-based flexible antennas in consumer electronic devices. Mater. Today 2018, 21, 223–230. [Google Scholar] [CrossRef]
- Dong, Z.; Sun, C.; Si, J.; Deng, X. A tunable plasmonic nano-antenna based on metal-graphene double-nanorods. Laser Phys. Lett. 2018, 15, 056202. [Google Scholar] [CrossRef]
- Koshino, M. Stacking-dependent optical absorption in multilayer graphene. New J. Phys. 2013, 15, 015010. [Google Scholar] [CrossRef] [Green Version]
- Picardi, F.; Zayats, M.V.; Rodríguez-Fortuño, A.F.J. Amplitude and Phase Control of Guided Modes Excitation from a Single Dipole Source: Engineering Far- and Near-Field Directionality. Laser Photonics Rev. 2019, 13, 1900250. [Google Scholar] [CrossRef]
- Halas, N.J.; Fang, Z.; Liu, Z.; Nordlander, P.; Zhu, X.; García de Abajo, F.J.; Ajayan, P.M.; Schlather, A.E.; Wang, Y. Active Tunable Absorption Enhancement with Graphene Nanodisk Arrays. Nano Lett. 2013, 14, 299–304. [Google Scholar]
- Song, J.; Wu, X.; Huang, C.; Yang, J.; Ji, C.; Zhang, C.; Luo, X. Broadband and Tunable RCS Reduction using High-order Reflections and Salisbury-type Absorption Mechanisms. Sci. Rep. 2019, 9, 9036. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Chen, L.; Wang, B.; Li, X. Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies. Sci. Rep. 2015, 5, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.; Sturmberg, B.C.P.; Lin, K.T.; Yang, Y.; Zheng, X.; Chong, T.K.; de Sterke, C.M.; Jia, B. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics 2019, 13, 270–276. [Google Scholar] [CrossRef]
- Yang, J.; Kong, F.; Li, K. Broad Tunable Nanoantenna Based on Graphene Log-Periodic Toothed Structure. Plasmonics 2016, 11, 981–986. [Google Scholar] [CrossRef]
- Yu, A. Tunable strong THz absorption assisted by graphene-dielectric stacking structure. Superlattices Microstruct. 2018, 122, 461–470. [Google Scholar] [CrossRef]
- Xiong, F.; Zhang, J.; Zhu, Z.; Yuan, X.; Qin, S. Ultrabroadband, More than One Order Absorption Enhancement in Graphene with Plasmonic Light Trapping. Sci. Rep. 2015, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Matthaiakakis, N.; Yan, X.; Mizuta, H.; Charlton, M.D.B. Tuneable strong optical absorption in a graphene-insulator-metal hybrid plasmonic device. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ullah, Z.; Witjaksono, G.; Nawi, I.; Tansu, N. A Review on the Development of Tunable Graphene Nanoantennas for Terahertz Optoelectronic and Plasmonic Applications. Sensors 2020, 20, 1401. [Google Scholar] [CrossRef] [Green Version]
- Gric, T.; Gorodetsky, A.; Trofimov, A.; Rafailov, E. Tunable Plasmonic Properties and Absorption Enhancement in Terahertz Photoconductive Antenna Based on Optimized Plasmonic Nanostructures. J. Infrared Millim. Terahertz Waves 2018, 39, 1028–1038. [Google Scholar] [CrossRef]
- Wang, Z.; Hou, Y. Ultra-multiband absorption enhancement of graphene in a metal-dielectric-graphene sandwich structure covering terahertz to mid-infrared regime. Opt. Express 2017, 25, 19185. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, J.; Xu, W.; Liu, K.; Yuan, X.; Qin, S.; Zhu, Z. Graphene-based perfect absorption structures in the visible to terahertz band and their optoelectronics applications. Nanomaterials 2018, 8, 1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mubarak, M.H.; Sidek, O.; Abdel-Rahman, M.R.; Mustaffa, M.T.; Mustapa Kamal, A.S.; Mukras, S.M. Nano-Antenna Coupled Infrared Detector Design. Sensors 2018, 18, 3714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Zhang, J.; Liu, C.; Wu, Z.P.; He, D. Equivalent resonant circuit modeling of a graphene-based bowtie antenna. Electronics 2018, 7, 285. [Google Scholar] [CrossRef] [Green Version]
- Tamagnone, M.; Perruisseau-Carrier, J. Predicting input impedance and efficiency of graphene reconfigurable dipoles using a simple circuit model. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.S.; Jiang, L.J.; Ruehli, A.E. An Equivalent Circuit Model for Graphene-Based Terahertz Antenna Using the PEEC Method. IEEE Antennas Wirel. Propag. Lett. 2016, 64, 1385–1393. [Google Scholar] [CrossRef]
- Cao, Y.S.; Jiang, L.J.; Ruehli, A.E. Distributive Radiation and Transfer Characterization Based on the PEEC Method. IEEE Trans. Electromagn. Compat. 2015, 57, 734–742. [Google Scholar] [CrossRef] [Green Version]
- Mishra, R.; Panwar, R.; Singh, D. Equivalent circuit model for the design of frequency-selective, terahertz-band, graphene-based metamaterial absorbers. IEEE Magn. Lett. 2018, 9, 1–5. [Google Scholar] [CrossRef]
- Han, M.Y.; Özyilmaz, B.; Zhang, Y.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Diaz, J.S.; Moldovan, C.; Capdevila, S.; Romeu, J.; Bernard, L.S.; Magrez, A.; Ionescu, A.M.; Perruisseau-Carrier, J. Self-biased reconfigurable graphene stacks for terahertz plasmonics. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, C.; Lv, W.; Xu, S.; Yao, J. Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators. IEEE Photonics Technol. Lett. 2015, 27, 1321–1324. [Google Scholar] [CrossRef]
- Sun, Z.; Zheng, Y.; Fu, Y. Graphene-based spatial light modulator using metal hot spots. Materials 2019, 12, 3082. [Google Scholar] [CrossRef] [Green Version]
- Sherrott, M.C.; Hon, P.W.C.; Fountaine, K.T.; Garcia, J.C.; Ponti, S.M.; Brar, V.W.; Sweatlock, L.A.; Atwater, H.A. Experimental Demonstration of > 230° Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces. Nano Lett. 2017, 17, 3027–3034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, H.; Li, X.; Chandra, B.; Tulevski, G.; Wu, Y.; Freitag, M.; Zhu, W.; Avouris, P.; Xia, F. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotechnol. 2012, 7, 330–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, X.; Sha, W.E.I.; Choy, W.C.H. Tuning optical responses of metallic dipole nanoantenna using graphene. Opt. Express 2013, 21, 31824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovannetti, G.; Khomyakov, P.A.; Brocks, G.; Karpan, V.M.; Van Den Brink, J.; Kelly, P.J. Doping graphene with metal contacts. Phys. Rev. Lett. 2008, 101, 4–7. [Google Scholar] [CrossRef]
- Ji, J.; Zhou, S.; Wang, W.; Luo, C.; Liu, Y.; Ling, F.; Yao, J. Active multifunctional terahertz modulator based on plasmonic metasurface. Opt. Express 2019, 27, 2363. [Google Scholar] [CrossRef]
- Li, S.; Nugraha, P.S.; Su, X.; Chen, X.; Yang, Q.; Unferdorben, M.; Kovács, F.; Kunsági-Máté, S.; Liu, M.; Zhang, X.; et al. Terahertz electric field modulated mode coupling in graphene-metal hybrid metamaterials. Opt. Express 2019, 27, 2317. [Google Scholar] [CrossRef]
- Yu, A.; Guo, X.; Zhu, Y.; Balakin, A.V.; Shkurinov, A.P. Metal-graphene hybridized plasmon induced transparency in the terahertz frequencies. Opt. Express 2019, 27, 34731. [Google Scholar] [CrossRef]
- Wu, D.; Liu, Y.; Yu, L.; Yu, Z.; Chen, L.; Li, R.; Ma, R.; Liu, C.; Zhang, J.; Ye, H. Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mayerhöfer, T.G.; Popp, J. Quantitative Evaluation of Infrared Absorbance Spectra—Lorentz Profile versus Lorentz Oscillator. ChemPhysChem 2019, 20, 31–36. [Google Scholar] [CrossRef]
- Svintsov, D.; Devizorova, Z.; Otsuji, T.; Ryzhii, V. Plasmons in tunnel-coupled graphene layers: Backward waves with quantum cascade gain. Phys. Rev. B 2016, 94, 115301. [Google Scholar] [CrossRef] [Green Version]
- Lovat, G. Equivalent circuit for electromagnetic interaction and transmission through graphene sheets. IEEE Trans. Electromagn. Compat. 2012, 54, 101–109. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, J.; Liu, C.; Wu, Z.P. Input impedance and efficiency analysis of graphene-based plasmonic nanoantenna using theory of characteristic modes. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2031–2035. [Google Scholar] [CrossRef]
- Guo, J.; Wu, L.; Dai, X.; Xiang, Y.; Fan, D. Absorption enhancement and total absorption in a graphene-waveguide hybrid structure. AIP Adv. 2017, 7, 025101. [Google Scholar] [CrossRef] [Green Version]
- Zouaghi, W.; Voß, D.; Gorath, M.; Nicoloso, N.; Roskos, H.G. How good would the conductivity of graphene have to be to make single-layer-graphene metamaterials for terahertz frequencies feasible? Carbon 2015, 94, 301–308. [Google Scholar] [CrossRef]
- Zakrajsek, L.; Einarsson, E.; Thawdar, N.; Medley, M.; Jornet, J.M. Lithographically Defined Plasmonic Graphene Antennas for Terahertz-Band Communication. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1553–1556. [Google Scholar] [CrossRef]
L1/nH | L2/nH | C/pF | R/Ω | LG/nH | CG/pF | fo/THz | S11/dB | Bandwidth (THz) |
---|---|---|---|---|---|---|---|---|
0.10 | 6.80 | 49.73 | 293 | 0.1 | 11.19 | 32.95 | −5 | 0.2 |
0.10 | 70.77 | 49.67 | 1340 | 0.1 | 46.73 | 32.7 | −8 | 0.3 |
0.10 | 74.96 | 49.08 | 3539 | 0.1 | 28.62 | 33 | −20 | 0.5 |
0.10 | 86.60 | 49.53 | 6157 | 0.1 | 38.92 | 32.8 | −14 | 0.35 |
μc/eV | fo/THz | S11/dB | β | Qa | Qo | Rin, CST/Ω |
---|---|---|---|---|---|---|
0 | 30.6 | −6.5 | 1.18 | 1.37 | 6.51 | 1200 |
0.1 | 31 | −8.4 | 1.42 | 2.02 | 7.75 | 3500 |
0.15 | 31.5 | −9 | 1.64 | 4.62 | 10.5 | 3000 |
0.2 | 32 | −10 | 1.72 | 5.32 | 11.6 | 3900 |
0.25 | 32.5 | −14 | 1.84 | 5.37 | 12.15 | 1800 |
0.3 | 33 | −24 | 1.91 | 6.42 | 12.83 | 1400 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, Z.; Nawi, I.; Witjaksono, G.; Tansu, N.; Khattak, M.I.; Junaid, M.; Siddiqui, M.A.; Magsi, S.A. Dynamic Absorption Enhancement and Equivalent Resonant Circuit Modeling of Tunable Graphene-Metal Hybrid Antenna. Sensors 2020, 20, 3187. https://doi.org/10.3390/s20113187
Ullah Z, Nawi I, Witjaksono G, Tansu N, Khattak MI, Junaid M, Siddiqui MA, Magsi SA. Dynamic Absorption Enhancement and Equivalent Resonant Circuit Modeling of Tunable Graphene-Metal Hybrid Antenna. Sensors. 2020; 20(11):3187. https://doi.org/10.3390/s20113187
Chicago/Turabian StyleUllah, Zaka, Illani Nawi, Gunawan Witjaksono, Nelson Tansu, Muhammad Irfan Khattak, Muhammad Junaid, Muhammad Aadil Siddiqui, and Saeed Ahmed Magsi. 2020. "Dynamic Absorption Enhancement and Equivalent Resonant Circuit Modeling of Tunable Graphene-Metal Hybrid Antenna" Sensors 20, no. 11: 3187. https://doi.org/10.3390/s20113187