Detection of Interfacial Structures in Inclined Liquid-Liquid Flows Using Parallel-Wire Array Probe and Planar Laser-Induced Fluorescence Methods
<p>The experiment setup for the inclined liquid-liquid two-phase flows.</p> "> Figure 2
<p>Sketch of planar laser-induced fluorescence system for flow visualization.</p> "> Figure 3
<p>Sketch of the conductance parallel-wire array probe (CPAP) structures: (<b>a</b>) Front view for parallel-wire electrodes; (<b>b</b>) Top view.</p> "> Figure 4
<p>The sketch of the CPAP measure system.</p> "> Figure 5
<p>The conductance parallel-wire array probe used in the experiment: (<b>a</b>) CPAP; (<b>b</b>) Parallel electrodes.</p> "> Figure 6
<p>Sketch of the planar laser-induced fluorescence (PLIF) system for the visualization of the static liquid-liquid interface.</p> "> Figure 7
<p>The static liquid-liquid interfaces visualized by the PLIF: (<b>a</b>) y<sub>a</sub> = 20%; (<b>b</b>) y<sub>a</sub> = 40%; (<b>c</b>) y<sub>a</sub> = 60%; (<b>d</b>) y<sub>a</sub> = 80%.</p> "> Figure 8
<p>Comparison of static interface heights measured by the CPAP and PLIF. The solid lines represent the interface heights derived from the PLIF visualizations.</p> "> Figure 9
<p>PLIF images for the flow conditions in the +3° inclined pipe: (<b>a</b>) Usa = 0.052 m/s, Uso = 0.15 m/s, ST flow; (<b>b</b>) Usa = 0.222 m/s, Uso = 0.15 m/s, ST flow; (<b>c</b>) Usa = 0.393 m/s, Uso = 0.15 m/s, ST&MI flow.</p> "> Figure 10
<p>PLIF images for the flow conditions in the +3° inclined pipe: (<b>a</b>) Usa = 0.052 m/s, Uso = 0.15 m/s, ST flow; (<b>b</b>) Usa = 0.222 m/s, Uso = 0.15 m/s, ST flow; (<b>c</b>) Usa = 0.393 m/s, Uso = 0.15 m/s, ST&MI flow.</p> "> Figure 11
<p>CPAP signals for the flow conditions in the −3° inclined pipe: (<b>a</b>) Usa = 0.052 m/s, Uso = 0.15 m/s, ST; (<b>b</b>) Usa = 0.222 m/s, Uso = 0.15 m/s, ST&MI; (<b>c</b>) Usa = 0.393 m/s, Uso = 0.15 m/s, ST&MI.</p> "> Figure 11 Cont.
<p>CPAP signals for the flow conditions in the −3° inclined pipe: (<b>a</b>) Usa = 0.052 m/s, Uso = 0.15 m/s, ST; (<b>b</b>) Usa = 0.222 m/s, Uso = 0.15 m/s, ST&MI; (<b>c</b>) Usa = 0.393 m/s, Uso = 0.15 m/s, ST&MI.</p> "> Figure 12
<p>Interfacial heights at pipe center detected by the PLIF and CPAP: (<b>a</b>) Interfacial height extracted from the PLIF image; (<b>b</b>) Interface height detected by the CPAP; (<b>c</b>) Time-dependent series of the interface heights.</p> "> Figure 13
<p>Comparison of the derived liquid-liquid interface heights by the PLIF and CPAP: (<b>a</b>) Usa = 0.052 m/s, Uso = 0.15 m/s, ST; (<b>b</b>) Usa = 0.222 m/s, Uso = 0.15 m/s, ST; (c) Usa = 0.393 m/s, Uso = 0.15 m/s, ST&MI.</p> "> Figure 14
<p>CPAP visualizations of the liquid-liquid interfaces for Uso = 0.15 m/s: (<b>a</b>) Usa = 0.11 m/s; (<b>b</b>) Usa = 0.166 m/s; (<b>c</b>) Usa = 0.222 m/s; (<b>d</b>) Usa = 0.336 m/s; (<b>e</b>) Usa = 0.393 m/s.</p> "> Figure 15
<p>CPAP visualizations of the liquid-liquid interfaces for Uso = 0.584 m/s: (<b>a</b>) Usa = 0.11 m/s; (<b>b</b>) Usa = 0.166 m/s; (<b>c</b>) Usa = 0.222 m/s; (<b>d</b>) Usa = 0.336 m/s; (<b>e</b>) Usa = 0.393 m/s.</p> "> Figure 16
<p>Fluctuating signals from electrode pairs 4 and 5: (<b>a</b>) Uso = 0.584 m/s, +3°; (<b>b</b>) Uso = 0.584 m/s, −3°.</p> "> Figure 16 Cont.
<p>Fluctuating signals from electrode pairs 4 and 5: (<b>a</b>) Uso = 0.584 m/s, +3°; (<b>b</b>) Uso = 0.584 m/s, −3°.</p> "> Figure 17
<p>Poincaré plot for the two-dimensional graphical representation of time series.</p> "> Figure 18
<p>Poincaré plot of the probe signals collected from typical flow conditions: (<b>a</b>) Uso = 0.584 m/s, +3°; (<b>b</b>) Uso = 0.584 m/s, −3°.</p> "> Figure 19
<p>The multiscale short-term distribution entropy (MS-SDE) for the inclined liquid-liquid flows: (<b>a</b>) Uso = 0.432 m/s, +3°; (<b>b</b>) Uso = 0.432 m/s, −3°.</p> "> Figure 20
<p>Mean MS-SDE of probe signals for the inclined liquid-liquid flows: (<b>a</b>) Uso = 0.15 m/s; (<b>b</b>) Uso = 0.195 m/s; (<b>c</b>) Uso = 0.432 m/s; (<b>d</b>) Uso = 0.583 m/s.</p> ">
Abstract
:1. Introduction
2. Experimental Setup
2.1. Inclined Flow Loop
2.2. Planar Laser-Induced Fluorescence (PLIF) System
2.3. Conductance Parallel-Wire Array Probe (CPAP) System
2.4. Visualization of Static Liquid-Liquid Interface
3. Experimental Results
3.1. CPAP Responses
3.2. Validation of CPAP Responses
3.3. Interfacial Shape of Inclined Liquid-Liquid Flows
3.4. Interfacial Instability of Inclined Liquid-Liquid Flows
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abubakar, A.; Al-Wahaibi, T.; Al-Hashmi, A.R.; Al-Wahaibi, Y.; Al-Ajmi, A. Effect of pipe inclination on holdups/velocity ratios of oil-water flow without and with addition of drag-reducing polymer. Int. J. Multiph. Flow 2017, 89, 359–374. [Google Scholar] [CrossRef]
- de Castro, M.S.; Rodriguez, O.M.H. Interfacial waves in stratified viscous oil–water flow. Exp. Therm. Fluid Sci. 2015, 62, 85–98. [Google Scholar] [CrossRef]
- Han, L.; Wang, H.; Liu, X.; Xie, R.; Mu, H.; Fu, C. Particle image velocimetry of oil–water two-phase flow with high water cut and low flow velocity in a horizontal small-diameter pipe. Sensors 2019, 19, 2702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, C.; Zhai, L.S.; Zhang, H.X.; Wang, H.M.; Jin, N.D. Cross-correlation analysis of interfacial wave and droplet entrainment in horizontal liquid-liquid two-phase flows. Chem. Eng. J. 2017, 320, 416–426. [Google Scholar] [CrossRef]
- Zhai, L.; Jin, N.; Zong, Y.; Hao, Q.; Gao, Z. Experimental flow pattern map, slippage and time–frequency representation of oil–water two-phase flow in horizontal small diameter pipes. Int. J. Multiph. Flow 2015, 76, 168–186. [Google Scholar] [CrossRef]
- Angeli, P.; Hewitt, G.F. Flow structure in horizontal oil–water flow. Int. J. Multiph. Flow 2000, 26, 1117–1140. [Google Scholar] [CrossRef]
- Zhai, L.; Zhang, H.; Yan, C.; Jin, N. Measurement of oil–water interface characteristics in horizontal pipe using a conductance parallel-wire array probe. IEEE Trans. Instrum. Meas. 2019, 68, 3232–3243. [Google Scholar] [CrossRef]
- Lum, J.Y.L.; Al-Wahaibi, T.; Angeli, P. Upward and downward inclination oil–water flows. Int. J. Multiph. Flow 2006, 32, 413–435. [Google Scholar] [CrossRef]
- Rodriguez, O.M.H.; Oliemans, R.V.A. Experimental study on oil–water flow in horizontal and slightly inclined pipes. Int. J. Multiph. Flow 2006, 32, 323–343. [Google Scholar] [CrossRef]
- Hanafizadeh, P.; Hojati, A.; Karimi, A. Experimental investigation of oil–water two phase flow regime in an inclined pipe. J. Pet. Sci. Eng. 2015, 136, 12–22. [Google Scholar] [CrossRef]
- Kumara, W.; Halvorsen, B.; Melaaen, M. Particle image velocimetry for characterizing the flow structure of oil–water flow in horizontal and slightly inclined pipes. Chem. Eng. Sci. 2010, 65, 4332–4349. [Google Scholar] [CrossRef]
- Kumara, W.A.S.; Halvorsen, B.M.; Melaaen, M.C. Single-beam gamma densitometry measurements of oil–water flow in horizontal and slightly inclined pipes. Int. J. Multiph. Flow 2010, 36, 467–480. [Google Scholar] [CrossRef]
- Azizi, S.; Awad, M.M.; Ahmadloo, E. Prediction of water holdup in vertical and inclined oil–water two-phase flow using artificial neural network. Int. J. Multiph. Flow 2016, 80, 181–187. [Google Scholar] [CrossRef]
- Hanafizadeh, P.; Karimi, A.; Taklifi, A.; Hojati, A. Experimental investigation of two-phase water–oil flow pressure drop in inclined pipes. Exp. Therm. Fluid Sci. 2016, 74, 169–180. [Google Scholar] [CrossRef]
- Grassi, B.; Strazza, D.; Poesio, P. Experimental validation of theoretical models in two-phase high-viscosity ratio liquid–liquid flows in horizontal and slightly inclined pipes. Int. J. Multiph. Flow 2008, 34, 950–965. [Google Scholar] [CrossRef]
- Zhai, L.; Zhang, H.; Jin, N. Prediction of pressure drop for segregated oil-water flows in small diameter pipe using modified two-fluid model. Exp. Therm. Fluid Sci. 2020, 114, 110078. [Google Scholar] [CrossRef]
- Zhang, H.X.; Zhai, L.S.; Liu, R.Y.; Yan, C.; Jin, N.D. Prediction of curved oil-water interface in horizontal pipes using modified model with dynamic contact angle. Chin. J. Chem. Eng. 2020, 28, 698–711. [Google Scholar] [CrossRef]
- Edomwonyi-Otu, L.C.; Angeli, P. Pressure drop and holdup predictions in horizontal oil–water flows for curved and wavy interfaces. Chem. Eng. Res. Des. 2015, 93, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Barral, A.H.; Angeli, P. Interfacial characteristics of stratified liquid–liquid flows using a conductance probe. Exp. Fluids 2013, 54, 1–15. [Google Scholar] [CrossRef]
- He, D.; Chen, S.; Bai, B. Void fraction measurement of stratified gas-liquid flow based on multi-wire capacitance probe. Exp. Therm. Fluid Sci. 2019, 102, 61–73. [Google Scholar] [CrossRef]
- Aydin, T.B.; Torres, C.F.; Karami, H.; Pereyra, E.; Sarica, C. On the characteristics of the roll waves in gas–liquid stratified-wavy flow: A two-dimensional perspective. Exp. Therm. Fluid Sci. 2015, 65, 90–102. [Google Scholar] [CrossRef]
- Zhai, L.; Yang, J.; Meng, Z. Detection of transient gas-liquid flow structures in horizontal shale gas well using wire-mesh sensor. J. Nat. Gas Sci. Eng. 2019, 72, 103013. [Google Scholar] [CrossRef]
- Schleicher, E.; Besim Aydin, T.; Vieira, R.E.; Torres, C.F.; Pereyra, E.; Sarica, C.; Hampel, U. Refined reconstruction of liquid–gas interface structures for stratified two-phase flow using wire-mesh sensor. Flow Meas. Instrum. 2015, 46, 230–239. [Google Scholar] [CrossRef]
- Masala, T.; Harvel, G.; Chang, J.S. Separated two-phase flow regime parameter measurement by a high speed ultrasonic pulse-echo system. Rev. Sci. Instruments 2007, 78, 114901. [Google Scholar] [CrossRef]
- Liang, F.; Zheng, H.; Yu, H.; Sun, Y. Gas–liquid two-phase flow pattern identification by ultrasonic echoes reflected from the inner wall of a pipe. Meas. Sci. Technol. 2016, 27, 035304. [Google Scholar] [CrossRef]
- Zhai, L.; Jin, N.; Zong, Y.; Wang, Z.; Gu, M. The development of a conductance method for measuring liquid holdup in horizontal oil-water two-phase flows. Meas. Sci. Technol. 2012, 23, 025304. [Google Scholar] [CrossRef]
- Jana, A.K.; Das, G.; Das, P.K. Flow regime identification of two-phase liquid–liquid upflow through vertical pipe. Chem. Eng. Sci. 2006, 61, 1500–1515. [Google Scholar] [CrossRef]
- Zhai, L.-S.; Li, X.-Y.; Bian, P.; Jin, N.-D. Measurement of droplet sizes in bubbly oil-in-water flows using a fluid-sampling device. Measurement 2017, 102, 296–308. [Google Scholar] [CrossRef]
- Brauner, N.; Rovinsky, J.; Moalem Maron, D. Determination of the interface curvature in stratified two-phase systems by energy considerations. Int. J. Multiph. Flow 1996, 22, 1167–1185. [Google Scholar] [CrossRef]
- Ng, T.; Lawrence, C.; Hewitt, G. Interface shapes for two-phase laminar stratified flow in a circular pipe. Int. J. Multiph. Flow 2001, 27, 1301–1311. [Google Scholar] [CrossRef]
- Gorelik, D.; Brauner, N. The interface configuration in two-phase stratified pipe flows. Int. J. Multiph. Flow 1999, 25, 977–1007. [Google Scholar] [CrossRef]
- Zhai, L.S.; Wang, H.M.; Yan, C.; Zhang, H.X.; Jin, N.D. Development of empirical correlation to predict droplet size of oil-in-water flows using a multi-scale Poincaré plot. Exp. Therm. Fluid Sci. 2018, 98, 290–302. [Google Scholar] [CrossRef]
- Huo, C.; Huang, X.; Zhuang, J.; Hou, F.; Ni, H.; Ning, X. Quadrantal multi-scale distribution entropy analysis of heartbeat interval series based on a modified Poincaré plot. Phys. A Stat. Mech. Appl. 2013, 392, 3601–3609. [Google Scholar] [CrossRef]
- Morabito, F.C.; Labate, D.; La Foresta, F.; Bramanti, A.; Morabito, G.; Palamara, I. Multivariate multi-scale permutation entropy for complexity analysis of alzheimer’s disease EEG. Entropy 2012, 14, 1186–1202. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef] [Green Version]
Phase | Liquid | Refractive Index | Conductivity | ||
---|---|---|---|---|---|
Aqueous * | Water /Glycerol | 1033 | 7.9 | 1.4 | 396.8 |
Organic | Silicone oil | 963 | 4.8 | 1.4 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, L.; Meng, Z.; Yang, J.; Zhang, H.; Jin, N. Detection of Interfacial Structures in Inclined Liquid-Liquid Flows Using Parallel-Wire Array Probe and Planar Laser-Induced Fluorescence Methods. Sensors 2020, 20, 3159. https://doi.org/10.3390/s20113159
Zhai L, Meng Z, Yang J, Zhang H, Jin N. Detection of Interfacial Structures in Inclined Liquid-Liquid Flows Using Parallel-Wire Array Probe and Planar Laser-Induced Fluorescence Methods. Sensors. 2020; 20(11):3159. https://doi.org/10.3390/s20113159
Chicago/Turabian StyleZhai, Lusheng, Zihan Meng, Jie Yang, Hongxin Zhang, and Ningde Jin. 2020. "Detection of Interfacial Structures in Inclined Liquid-Liquid Flows Using Parallel-Wire Array Probe and Planar Laser-Induced Fluorescence Methods" Sensors 20, no. 11: 3159. https://doi.org/10.3390/s20113159