Graphene Electro-Optical Switch Modulator by Adjusting Propagation Length Based on Hybrid Plasmonic Waveguide in Infrared Band
<p>The stereograph and sectional view of graphene electro-optical switch modulator based on silver nanowire: (<b>a</b>) 3D layout structure (<b>b</b>) cross-sectional structure.</p> "> Figure 2
<p>Dependence of graphene conductivity on the Fermi level in 1550 nm incident wavelength.</p> "> Figure 3
<p>Dependence of graphene refractive index on the external voltage in 1550 nm incident wavelength.</p> "> Figure 4
<p>Dependence of normalized effective mode area and propagation length on the gap g at R = 50 nm: (<b>a</b>) A<sub>eff</sub>/A<sub>0</sub> (<b>b</b>) L<sub>m</sub>.</p> "> Figure 5
<p>Dependence of normalized effective mode area and propagation length on the radius R at g = 1 nm: (<b>a</b>) A<sub>eff/</sub>A<sub>0</sub> (<b>b</b>) L<sub>m</sub>.</p> "> Figure 6
<p>Dependence of L<sub>m</sub> on external voltage for the proposed modulator graphene electro-optical switch modulator based on silver nanowire (GESMBOSN).</p> "> Figure 7
<p>Working principle diagram of the presented modulator GESMBOSN: (<b>a</b>) 3D layout structure in 1.5 V (<b>b</b>) two-dimensional electric field pattern after modulation in 1.5 V. (<b>c</b>) 3D layout structure in 2.3 V (<b>d</b>) two-dimensional electric field pattern after modulation in 2.3 V.</p> "> Figure 8
<p>Multi section graph of GESMBOSN’s three-dimensional electric field in different external voltages: (<b>a</b>) 1.5 V (<b>b</b>) 2.3 V.</p> "> Figure 9
<p>Electric field transmission cross section of GESMBOSN in different external voltages: (<b>a</b>) 1.5 V (<b>b</b>) 2.3 V.</p> "> Figure 10
<p>Electric field intensity distribution diagram of GESMBOSN in different external voltages: (<b>a</b>) 1.5 V (<b>b</b>) 2.3 V.</p> "> Figure 11
<p>Dependence of L<sub>m</sub> on external voltage in different fabrication error tolerance for the proposed modulator GESMBOSN: (<b>a</b>) g (<b>b</b>) R.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Fabrication Error Tolerance and Manufacturing Process
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.; Geim, A.K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.; Yu, S.H.; Jeon, J.; Kim, H.; Lee, J.-Y.; Kim, H.; Ahn, J.-H.; Hwang, E.; Cho, J.H. Hybrid Structures of Organic Dye and Graphene for Ultrahigh Gain Photodetectors. Carbon 2015, 88, 165–172. [Google Scholar] [CrossRef]
- Gan, X.; Shiue, R.-J.; Gao, Y.; Meric, I.; Heinz, T.F.; Shepard, K.; Hone, J.; Assefa, S.; Englund, D. Chip-Integrated Ultrafast Graphene Photodetector with High Responsivity. Nat. Photon. 2013, 7, 883–887. [Google Scholar] [CrossRef]
- Li, J.; Tao, J.; Chen, Z.H.; Huang, X.-G. All-optical Controlling Based on Nonlinear Graphene Plasmonic Waveguides. Opt. Express 2016, 24, 22169–22176. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Anugrah, Y.; Koester, S.J.; Li, M. Optical absorption in graphene integrated on silicon waveguides. Appl. Phys. Lett. 2012, 101, 111110. [Google Scholar] [CrossRef] [Green Version]
- Sorianello, V.; Midrio, M.; Contestabile, G.; Asselberghs, I.; Van Campenhout, J.; Huyghebaert, C.; Goykhman, I.; Ott, A.K.; Ferrari, A.C.; Romagnoli, M. Graphene–Silicon Phase Modulators with Gigahertz Bandwidth. Nat. Photon. 2017, 12, 40. [Google Scholar] [CrossRef]
- Chen, J.-H.; Zheng, B.-C.; Shao, G.-H.; Ge, S.-J.; Xu, F.; Lu, Y.-Q. An All-Optical Modulator Based on a Stereo Graphene–Microfiber Structure. Light. Sci. Appl. 2015, 4, e360. [Google Scholar] [CrossRef]
- Cao, H.; Zhou, X.; Qin, Z.; Liu, Z. Low-Temperature Preparation of Nitrogen-Doped Graphene for Supercapacitors. Carbon 2013, 56, 218–223. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Stoller, M.D.; Ganesh, K.J.; Cai, W.; Ferreira, P.J.; Pirkle, A.; Wallace, R.M.; Cychosz, K.A.; Thommes, M. Carbon-Based Supercapacitors Produced by Activation of Graphene. Science 2011, 332, 1537–1541. [Google Scholar] [CrossRef] [Green Version]
- Wan, S.; Bi, H.; Zhou, Y.; Xie, X.; Su, S.; Yin, K.; Sun, L. Graphene Oxide as High-Performance Dielectric Materials for Capacitive Pressure Sensors. Carbon 2017, 114, 209–216. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, Z.; Si, S.; Wu, W.; Deng, H.; Wang, F.; Xiao, X.; Jiang, C. Mercuric Contamination: Ultrasensitive SERS Substrate Integrated with Uniform Subnanometer Scale “Hot Spots” Created by a Graphene Spacer for the Detection of Mercury Ions (Small 9/2017). Small 2017, 13, 1603347. [Google Scholar] [CrossRef]
- Simsek, E. A Closed-Form Approximate Expression for the Optical Conductivity of Graphene. Opt. Lett. 2013, 38, 1437–1439. [Google Scholar] [CrossRef] [PubMed]
- Gusynin, V.P.; Sharapov, S.; Carbotte, J.P. Magneto-Optical Conductivity in Graphene. J. Phys. Condens. Matter 2006, 19, 026222. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Ouyang, H.; Zheng, X.; You, J.; Chen, R.; Zhou, T.; Sui, Y.; Liu, Y.; Cheng, X.A.; Jiang, T. Ultrafast Saturable Absorption of MoS_2 Nanosheets under Different Pulse-Width Excitation Conditions. Opt. Lett. 2018, 43, 243–246. [Google Scholar] [CrossRef]
- Dalir, H.; Xia, Y.; Wang, Y.; Zhang, X. Athermal Broadband Graphene Optical Modulator with 35 GHz Speed. ACS Photon. 2016, 3, 1564–1568. [Google Scholar] [CrossRef]
- Youngblood, N.; Anugrah, Y.; Ma, R.; Koester, S.J.; Li, M. Multifunctional Graphene Optical Modulator and Photodetector Integrated on Silicon Waveguides. Nano Lett. 2014, 14, 2741–2746. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Song, Y.; Huang, Y.; Kita, D.; Deckoff-Jones, S.; Wang, K.; Li, L.; Li, J.; Zheng, H.; Luo, Z. Chalcogenide Glass-on-Graphene Photonics. Nat. Photon. 2017, 11, 798. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Ma, C.; Huang, Y.; Yang, G.; Huang, Y. Single Silicon Nanostripe Gated Suspended Monolayer and Bilayer WS2 to Realize Abnormal Electro-Optical Modulation. Mater. Horizons 2019, 6, 334–342. [Google Scholar] [CrossRef]
- Phare, C.; Lee, Y.-H.D.; Cardenas, J.; Lipson, M. Graphene Electro-Optic Modulator with 30 GHz Bandwidth. Nat. Photon. 2015, 9, 511. [Google Scholar] [CrossRef]
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A Graphene-Based Broadband Optical Modulator. Nature 2011, 474, 64–67. [Google Scholar] [CrossRef]
- Nielsen, M.P.P.; LaFone, L.; Rakovich, Y.P.; Sidiropoulos, T.; Rahmani, M.; Maier, S.A.; Oulton, R.F. Adiabatic Nanofocusing in Hybrid Gap Plasmon Waveguides on the Silicon-on-Insulator Platform. Nano Lett. 2016, 16, 1410–1414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabos, G.; Manolis, A.; Papaioannou, S.; Tsiokos, D.; Markey, L.; Weeber, J.-C.; Dereux, A.; Giesecke, A.L.; Porschatis, C.; Chmielak, B. CMOS Plasmonics in WDM Data Transmission: 200 Gb/s (8 × 25Gb/s) Transmission over Aluminum Plasmonic Waveguides. Opt. Express 2018, 26, 12469–12478. [Google Scholar] [CrossRef] [PubMed]
- Veronis, G.; Fan, S. Bends and Splitters in Metal-Dielectric-Metal Subwavelength Plasmonic Waveguides. Appl. Phys. Lett. 2005, 87, 131102. [Google Scholar] [CrossRef]
- Butt, M.A.; Хoнина, C.H.; Kazanskiy, N.L. Plasmonic Refractive Index Sensor Based on Metal-Insulator-Metal Waveguides with High Sensitivity. J. Mod. Opt. 2019, 66, 1038–1043. [Google Scholar] [CrossRef]
- Oulton, R.F.; Sorger, V.J.; Genov, D.A.; Pile, D.; Zhang, X. A Hybrid Plasmonic Waveguide for Subwavelength Confinement and Long-Range Propagation. Nat. Photon. 2008, 2, 496–500. [Google Scholar] [CrossRef] [Green Version]
- Bian, Y.; Ren, Q.; Kang, L.; Yue, T.; Werner, P.L.; Werner, D.H. Deep-Subwavelength Light Transmission in Hybrid Nanowire-Loaded Silicon Nano-Rib Waveguides. Photon. Res. 2017, 6, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Liu, H.; Wang, S.; Qu, S.; Wu, L. Hybrid Tube-Triangle Plasmonic Waveguide for Ultra-Deep Subwavelength Confinement. J. Light. Technol. 2017, 35, 2259–2265. [Google Scholar] [CrossRef]
- Bian, Y.; Gong, Q. Deep-Subwavelength Light Confinement and Transport in Hybrid Dielectric-Loaded Metal Wedges. Laser Photon. Rev. 2014, 8, 549–561. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Hybrid Plasmonic Waveguide-Assisted Metal–Insulator–Metal Ring Resonator for Refractive Index Sensing. J. Mod. Opt. 2018, 65, 1135–1140. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Wang, S.; Cai, M.; Zhang, H.; Qiao, Y. Electrical Phase Control Based on Graphene Surface Plasmon Polaritons in Mid-infrared. Nanomaterials 2020, 10, 576. [Google Scholar] [CrossRef] [Green Version]
- Qu, S.; Ma, C.; Liu, H. Tunable Graphene-Based Hybrid Plasmonic Modulators for Subwavelength Confinement. Sci. Rep. 2017, 7, 5190. [Google Scholar] [CrossRef] [PubMed]
- Ansell, D.; Radko, I.P.; Han, Z.; Rodriguez, F.; Bozhevolnyi, S.I.; Grigorenko, A.N. Hybrid Graphene Plasmonic Waveguide Modulators. Nat. Commun. 2015, 6, 8846. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.R.; Bhardwaj, P.; Subramanian, S.; Jaiswal, M.; Dhawan, A. Design of Electro-Optic Modulators and Switches Based on Graphene and Phase Change Materials. Integr. Opt. Des. Devices Syst. Appl. V 2019, 11031, 110311F. [Google Scholar]
- Zheng, P.; Yang, H.; Fan, M.; Hu, G.; Zhang, R.; Yun, B.; Cui, Y. A Hybrid Plasmonic Modulator Based on Graphene on Channel Plasmonic Polariton Waveguide. Plasmonics 2018, 13, 2029–2035. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Xiang, Y.; Jiang, G.; Wang, L.; Bao, Q.; Zhang, H.; Liu, Y.; Wen, S.; Fan, D. A Broadband Optical Modulator Based on a Graphene Hybrid Plasmonic Waveguide. J. Light. Technol. 2016, 34, 4948–4953. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Wang, S.; Cai, M.; Ma, L. Optical Transport Properties of Graphene Surface Plasmon Polaritons in Mid-Infrared Band. Crystals 2019, 9, 354. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.; Wang, S.; Gao, B.; Wang, Y.; Han, T.; Liu, H. A New Electro-Optical Switch Modulator Based on the Surface Plasmon Polaritons of Graphene in Mid-Infrared Band. Sensors 2018, 19, 89. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Farrell, G.; Semenova, Y.; Wu, Q. A Hybrid Wedge-To-Wedge Plasmonic Waveguide with Low Loss Propagation and Ultra-Deep-Nanoscale Mode Confinement. J. Light. Technol. 2015, 33, 3827–3835. [Google Scholar] [CrossRef]
- Qu, S.; Ma, C.; Wang, S.; Liu, H.; Dong, L. Modulation Speed Limits of a Graphene-Based Modulator. Opt. Quantum Electron. 2018, 50, 105. [Google Scholar] [CrossRef]
- Gric, T.; Cada, M. Analytic Solution to Field Distribution in One-Dimensional Inhomogeneous Media. Opt. Commun. 2014, 322, 183–187. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Cai, M.; Liu, H. A Long Propagation Distance Hybrid Triangular Prism Waveguide for Ultradeep Subwavelength Confinement. IEEE Sens. J. 2019, 19, 11159–11166. [Google Scholar] [CrossRef]
- Bian, Y.; Zheng, Z.; Liu, Y.; Liu, J.; Zhu, J.; Zhou, T. Hybrid Wedge Plasmon Polariton Waveguide with Good Fabrication-Error-Tolerance for Ultra-Deep-Subwavelength Mode Confinement. Opt. Express 2011, 19, 22417–22422. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, M.; Wang, S.; Liu, Z.; Wang, Y.; Han, T.; Liu, H. Graphene Electro-Optical Switch Modulator by Adjusting Propagation Length Based on Hybrid Plasmonic Waveguide in Infrared Band. Sensors 2020, 20, 2864. https://doi.org/10.3390/s20102864
Cai M, Wang S, Liu Z, Wang Y, Han T, Liu H. Graphene Electro-Optical Switch Modulator by Adjusting Propagation Length Based on Hybrid Plasmonic Waveguide in Infrared Band. Sensors. 2020; 20(10):2864. https://doi.org/10.3390/s20102864
Chicago/Turabian StyleCai, Ming, Shulong Wang, Zhihong Liu, Yindi Wang, Tao Han, and Hongxia Liu. 2020. "Graphene Electro-Optical Switch Modulator by Adjusting Propagation Length Based on Hybrid Plasmonic Waveguide in Infrared Band" Sensors 20, no. 10: 2864. https://doi.org/10.3390/s20102864