Optical Interferometric Fringe Pattern-Incorporated Spectrum Calibration Technique for Enhanced Sensitivity of Spectral Domain Optical Coherence Tomography
<p>System configuration of the SD-OCT system. Abbreviations: BLS, broadband laser source; C, collimator; DG, diffraction grating; DC, dispersion compensator; E, eye; FC, fiber coupler; GM, Galvano mirror; L, lens; LSC, line scan camera; M, mirror; PC, polarization controller; RSL, retinal scanning lens.</p> "> Figure 2
<p>Graphical representation of the fundamental steps of the software-based intensity detection and resampling algorithm developed for the spectral calibration.</p> "> Figure 3
<p>Flow diagram of the fundamental steps performed for dispersion of the system. The red color solid arrows illustrate switching image states (changing of images), while compensating dispersion using decoupled hardware and software methods. The blue color solid arrows illustrate switching image states, while changing the focusing position.</p> "> Figure 4
<p>Evaluations of the point spread function (PSF)-based spectral interferogram analysis. (<b>a</b>) The depth information table of each PSF position, showing the respective number of points carrying maximum intensity, (<b>b</b>) correlated pixel numbers (pixel positions) at each number of points with maximum intensity prior to interpolation, and (<b>c</b>) the averaged graphical plot of the eight respective graphs in <a href="#sensors-20-02067-f004" class="html-fig">Figure 4</a>b.</p> "> Figure 5
<p>Quantitative representation of system sensitivity assessments. (<b>a</b>) Depth-dependent system intensity fall-off and (<b>b</b>) depth-dependent sensitivity roll-off (signal-to-noise ratio, SNR) representation. Each PSF peak of <a href="#sensors-20-02067-f004" class="html-fig">Figure 4</a>a corresponds to the correlated pixel numbers of <a href="#sensors-20-02067-f004" class="html-fig">Figure 4</a>b.</p> "> Figure 6
<p>Full width at half maximum (FWHM) comparison between before (without) and after (with) spectral calibrated depth-dependent PSFs.</p> "> Figure 7
<p>Spectrum calibrated two dimensional OCT images acquired prior to dispersion compensation. (<b>a</b>) 2D-OCT images of the infrared (IR)-detection card at top and bottom depth levels. (<b>b</b>) 2D-OCT images of five glass cover slips at top and bottom depth levels. Red color square boxes represent a region of interest with non-corrected dispersion. Horizontal scale bar: 1 mm, vertical scale bar: 300 μm.</p> "> Figure 8
<p>Spectrum calibrated two dimensional OCT images acquired after performing dispersion compensation. (<b>a</b>) 2D-OCT images of IR-detection card at top and bottom depth levels. (<b>b</b>) 2D-OCT images of five glass cover slips at top and bottom depth levels. Green color square boxes represent a region of interest with corrected dispersion. Horizontal scale bar: 1 mm, vertical scale bar: 300 μm.</p> "> Figure 9
<p>Image comparison with and without spectral calibrated in vivo human retina. (<b>a</b>) In vivo human retinal image before (without) spectral calibration; (<b>b</b>) shows magnified view of red box. (<b>c</b>) In vivo human retinal image after (with) spectral calibration; (<b>d</b>) shows magnified view of green box. (<b>a</b>) Horizontal scale bar: 1 mm, vertical scale bar: 300 μm, (<b>b</b>) horizontal scale bar: 500 μm, vertical scale bar: 150 μm.</p> "> Figure 10
<p>OCT image verification of <span class="html-italic">in vivo</span> rat posterior chamber along with B-scans corresponding to multiple positions. (<b>a</b>) Before calibration, (<b>b</b>) after calibration, (<b>c</b>) averaged posterior vitreous opacifications. The horizontal and vertical scale bars of P1–P4 (position 1–position 4) are 1 mm and 700 μm, respectively.</p> "> Figure 11
<p>The OCT image verification of <span class="html-italic">in vivo</span> rat anterior vitreous opacification along with B-scans corresponds to multiple positions. (<b>a</b>) 3D enface visualization of anterior vitreous opacification, (<b>b</b>) before calibration, and (<b>c</b>) after calibration. The horizontal and vertical scale bars of (<b>b</b>) are 500 μm and 300 μm, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Optical Coherence Tomography (OCT) System Configuration
2.2. Spectral Calibration Algorithm
2.3. In Vivo Experimental Procedure
3. Results and Discussion
3.1. Analysis of Point Spread Function (PSF) Incorporated Spectral Calibration
3.2. Depth-Dependent Sensitivity Assessments after Spectral Calibration
3.3. Full Width at Half Maximum (FWHM) Evaluation of Depth-Dependent PSF
3.4. Implementation of Dispersion Correction
3.5. In Vivo OCT Image Verification of the Developed Spectral Calibration Method
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wojtkowski, M.; Srinivasan, V.J.; Ko, T.H.; Fujimoto, J.G.; Kowalczyk, A.; Duker, J.S. Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation. Opt. Express 2004, 12, 2404–2422. [Google Scholar] [CrossRef] [PubMed]
- Wojtkowski, M.; Srinivasan, V.; Fujimoto, J.G.; Ko, T.; Schuman, J.S.; Kowalczyk, A.; Duker, J.S. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2005, 112, 1734–1746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cense, B.; Nassif, N.A.; Chen, T.C.; Pierce, M.C.; Yun, S.-H.; Park, B.H.; Bouma, B.E.; Tearney, G.J.; de Boer, J.F. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt. Express 2004, 12, 2435–2447. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, J.G.; Brezinski, M.E.; Tearney, G.J.; Boppart, S.A.; Bouma, B.; Hee, M.R.; Southern, J.F.; Swanson, E.A. Optical biopsy and imaging using optical coherence tomography. Nat. Med. 1995, 1, 970–972. [Google Scholar] [CrossRef] [PubMed]
- Zysk, A.M.; Nguyen, F.T.; Oldenburg, A.L.; Marks, D.L.; Boppart, S.A. Optical coherence tomography: A review of clinical development from bench to bedside. J. Biomed. Opthalmol. 2007, 12, 051403–051424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaide, R.F.; Klancnik, J.M.; Cooney, M.J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015, 133, 45–50. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, R.; Vasa-Nicotera, M.; Leistner, D.M.; Reis, S.M.; Thome, C.E.; Boeckel, J.-N.; Fichtlscherer, S.; Zeiher, A.M. Coronary atherosclerotic plaque characteristics and cardiovascular risk factors―insights from an optical coherence tomography study. Circ. J. 2017, 81, 1165–1173. [Google Scholar] [CrossRef] [Green Version]
- Hariri, L.P.; Adams, D.C.; Wain, J.C.; Lanuti, M.; Muniappan, A.; Sharma, A.; Colby, T.V.; Mino-Kenudson, M.; Mark, E.J.; Kradin, R.L. Endobronchial optical coherence tomography for low-risk microscopic assessment and diagnosis of idiopathic pulmonary fibrosis in vivo. Am. J. Respir. Crit. Care Med. 2018, 197, 949–952. [Google Scholar] [CrossRef]
- Wang, K.C.; Astell, C.J.; Wijesinghe, P.; Larcombe, A.N.; Pinniger, G.J.; Zosky, G.R.; Kennedy, B.F.; Berry, L.J.; Sampson, D.D.; James, A.L. Optical coherence tomography-based contact indentation for diaphragm mechanics in a mouse model of transforming growth factor alpha induced lung disease. Sci. Rep. 2017, 7, 1517. [Google Scholar] [CrossRef] [Green Version]
- Schuh, S.; Holmes, J.; Ulrich, M.; Themstrup, L.; Jemec, G.B.; De Carvalho, N.; Pellacani, G.; Welzel, J. Imaging blood vessel morphology in skin: Dynamic optical coherence tomography as a novel potential diagnostic tool in dermatology. Dermatol. Ther. 2017, 7, 187–202. [Google Scholar] [CrossRef] [Green Version]
- Wijesinghe, R.E.; Park, K.; Jung, Y.; Kim, P.; Jeon, M.; Kim, J. Industrial resin inspection for display production using automated fluid-inspection based on multimodal optical detection techniques. Opt. Las. Eng. 2017, 96, 75–82. [Google Scholar] [CrossRef]
- Cho, N.H.; Park, K.; Kim, J.-Y.; Jung, Y.; Kim, J. Quantitative assessment of touch-screen panel by nondestructive inspection with three-dimensional real-time display optical coherence tomography. Opt. Las. Eng. 2015, 68, 50–57. [Google Scholar] [CrossRef]
- Shirazi, M.F.; Wijesinghe, R.E.; Ravichandran, N.K.; Kim, P.; Jeon, M.; Kim, J. Quality assessment of the optical thin films using line field spectral domain optical coherence tomography. Opt. Las. Eng. 2018, 110, 47–53. [Google Scholar] [CrossRef]
- Wijesinghe, R.E.; Lee, S.-Y.; Ravichandran, N.K.; Han, S.; Jeong, H.; Han, Y.; Jung, H.-Y.; Kim, P.; Jeon, M.; Kim, J. Optical coherence tomography-integrated, wearable (backpack-type), compact diagnostic imaging modality for in situ leaf quality assessment. Appl. Opt. 2017, 56, D108–D114. [Google Scholar] [CrossRef]
- Wijesinghe, R.E.; Lee, S.-Y.; Ravichandran, N.K.; Shirazi, M.F.; Kim, P.; Jung, H.-Y.; Jeon, M.; Kim, J. Biophotonic approach for the characterization of initial bitter-rot progression on apple specimens using optical coherence tomography assessments. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wijesinghe, R.E.H.; Lee, S.-Y.; Kim, P.; Jung, H.-Y.; Jeon, M.; Kim, J. Optical sensing method to analyze germination rate of capsicum annum seeds treated with growth-promoting chemical compounds using optical coherence tomography. J. Biomed. Opt. 2017, 22, 091502–091510. [Google Scholar] [CrossRef] [Green Version]
- Lan, G.; Li, G. Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Zhang, N.; Huo, T.; Wang, C.; Chen, T.; Zheng, J.-g.; Xue, P. Compressed sensing with linear-in-wavenumber sampling in spectral-domain optical coherence tomography. Opt. Lett. 2012, 37, 3075–3077. [Google Scholar] [CrossRef]
- Yun, S.; Tearney, G.; Bouma, B.; Park, B.; de Boer, J.F. High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength. Opt. Express 2003, 11, 3598–3604. [Google Scholar] [CrossRef]
- Van der Jeught, S.; Bradu, A.; Podoleanu, A.G. Real-time resampling in fourier domain optical coherence tomography using a graphics processing unit. J. Biomed. Opt. 2010, 15, 030511–030514. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A.; Pfefer, T.J.; Gilani, N.; Drezek, R. Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom. Opt. Lett. 2010, 35, 2269–2271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Kang, J.U. Real-time 4d signal processing and visualization using graphics processing unit on a regular nonlinear-k fourier-domain oct system. Opt. Express 2010, 18, 11772–11784. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Rollins, A.M. Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer. Opt. Lett. 2007, 32, 3525–3527. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Ding, Z. Spectral calibration in spectral domain optical coherence tomography. Chin. Opt. Lett. 2008, 6, 902–904. [Google Scholar] [CrossRef] [Green Version]
- Gelikonov, V.; Gelikonov, G.; Shilyagin, P. Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography. Opt. Spectrosc. 2009, 106, 459–465. [Google Scholar] [CrossRef]
- Xu, D.; Huang, Y.; Kang, J.U. Compressive sensing with dispersion compensation on non-linear wavenumber sampled spectral domain optical coherence tomography. Biomed. Opt. Express 2013, 4, 1519–1532. [Google Scholar] [CrossRef]
- Sugita, M.; Brown, R.A.; Popov, I.; Vitkin, A. K-distribution three-dimensional mapping of biological tissues in optical coherence tomography. J. Biomed. 2018, 11, 1–18. [Google Scholar] [CrossRef]
- Uribe-Patarroyo, N.; Kassani, S.H.; Villiger, M.; Bouma, B.E. Robust wavenumber and dispersion calibration for fourier-domain optical coherence tomography. Opt. Express 2018, 26, 9081–9094. [Google Scholar] [CrossRef]
- Yuan, Q.; Wang, Z.; Song, L.; Ge, C.; Lu, Z.; Yang, T. Ultrafast wavenumber linear-step-swept source based on synchronous lightwave synthesized frequency sweeper. IEEE Photonics J. 2019, 11, 1–9. [Google Scholar] [CrossRef]
- Chan, K.K.; Tang, S. High-speed spectral domain optical coherence tomography using non-uniform fast fourier transform. Biomed. Opt. Express 2010, 1, 1309–1319. [Google Scholar] [CrossRef] [Green Version]
- Eigenwillig, C.M.; Biedermann, B.R.; Palte, G.; Huber, R. K-space linear fourier domain mode locked laser and applications for optical coherence tomography. Opt. Express 2008, 16, 8916–8937. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yuan, Z.; Wang, H.; Pan, Y. Increasing the imaging depth of spectral-domain oct by using interpixel shift technique. Opt. Express 2006, 14, 7014–7023. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gao, W.; Bian, H.; Chen, C.; Liao, J. Self-spectral calibration for spectral domain optical coherence tomography. Opt. Eng. 2013, 52, 063603–063611. [Google Scholar] [CrossRef] [Green Version]
- Jeon, M.; Kim, J.; Jung, U.; Lee, C.; Jung, W.; Boppart, S.A. Full-range k-domain linearization in spectral-domain optical coherence tomography. Appl. Opt. 2011, 50, 1158–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.; Kwon, O.; Wijesinghe, R.; Kim, P.; Jung, U.; Song, J.; Lee, C.; Jeon, M.; Kim, J. Numerical-sampling-functionalized real-time index regulation for direct k-domain calibration in spectral domain optical coherence tomography. Electronics 2018, 7, 182. [Google Scholar] [CrossRef] [Green Version]
- Hagen, N.; Tkaczyk, T.S. Compound prism design principles, iii: Linear-in-wavenumber and optical coherence tomography prisms. Appl. Opt. 2011, 50, 5023–5030. [Google Scholar] [CrossRef] [Green Version]
- Attendu, X.; Ruis, R.M.; Boudoux, C.; van Leeuwen, T.G.; Faber, D.J. Simple and robust calibration procedure for k-linearization and dispersion compensation in optical coherence tomography. J. Biomed. Opt. 2019, 24, 056001–056013. [Google Scholar] [CrossRef]
- Makita, S.; Fabritius, T.; Miura, M.; Yasuno, Y. 1st Canterbury Workshop on Optical Coherence Tomography and Adaptive Optics. In Full-Range, High-Speed, High-Resolution 1 μm Spectral-Domain Optical Coherence Tomography with bm-Scan Method for the Human Posterior Eye Imaging; International Society for Optics and Photonics: Canterbury, UK, 2008; p. 713914. [Google Scholar]
- Podoleanu, A.G.; Bradu, A. Master–slave interferometry for parallel spectral domain interferometry sensing and versatile 3d optical coherence tomography. Opt. Express 2013, 21, 19324–19338. [Google Scholar] [CrossRef]
- Bradu, A.; Israelsen, N.M.; Maria, M.; Marques, M.J.; Rivet, S.; Feuchter, T.; Bang, O.; Podoleanu, A. Recovering distance information in spectral domain interferometry. Sci. Rep. 2018, 8, 1–16. [Google Scholar] [CrossRef]
- Cui, D.; Liu, X.; Zhang, J.; Yu, X.; Ding, S.; Luo, Y.; Gu, J.; Shum, P.; Liu, L. Dual spectrometer system with spectral compounding for 1-μm optical coherence tomography in vivo. Opt. Lett. 2014, 39, 6727–6730. [Google Scholar] [CrossRef]
- Choi, W.; Baumann, B.; Swanson, E.A.; Fujimoto, J.G. Extracting and compensating dispersion mismatch in ultrahigh-resolution fourier domain oct imaging of the retina. Opt. Express 2012, 20, 25357–25368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijesinghe, R.E.; Park, K.; Kim, P.; Oh, J.; Kim, S.-W.; Kim, K.; Kim, B.-M.; Jeon, M.; Kim, J. Optically deviated focusing method based high-speed sd-oct for in vivo retinal clinical applications. Opt. Rev. 2015, 23, 1–9. [Google Scholar] [CrossRef]
- Jian, Y.; Wong, K.; Sarunic, M.V. Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering. J. Biomed. Opt. 2013, 18, 026002–026007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, D.; Lee, J.; Jeon, M.; Kim, J. In vivo fascicle bifurcation imaging of rat sciatic nerve using swept-source optical coherence tomography. IEEE Access 2018, 6, 7713–7718. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.; Wijesinghe, R.E.; Jeon, D.; Han, Y.; Lee, J.; Lee, J.; Jo, H.; Lee, D.-E.; Jeon, M.; Kim, J. Optical Interferometric Fringe Pattern-Incorporated Spectrum Calibration Technique for Enhanced Sensitivity of Spectral Domain Optical Coherence Tomography. Sensors 2020, 20, 2067. https://doi.org/10.3390/s20072067
Han S, Wijesinghe RE, Jeon D, Han Y, Lee J, Lee J, Jo H, Lee D-E, Jeon M, Kim J. Optical Interferometric Fringe Pattern-Incorporated Spectrum Calibration Technique for Enhanced Sensitivity of Spectral Domain Optical Coherence Tomography. Sensors. 2020; 20(7):2067. https://doi.org/10.3390/s20072067
Chicago/Turabian StyleHan, Sangyeob, Ruchire Eranga Wijesinghe, Deokmin Jeon, Youngmin Han, Jaeyul Lee, Junsoo Lee, Hosung Jo, Dong-Eun Lee, Mansik Jeon, and Jeehyun Kim. 2020. "Optical Interferometric Fringe Pattern-Incorporated Spectrum Calibration Technique for Enhanced Sensitivity of Spectral Domain Optical Coherence Tomography" Sensors 20, no. 7: 2067. https://doi.org/10.3390/s20072067