RTK/Pseudolite/LAHDE/IMU-PDR Integrated Pedestrian Navigation System for Urban and Indoor Environments
<p>Four dominant directions are pre-established with the fact that most corridors in buildings are straight and so are most walls and sidewalks alongside where a person might walk.</p> "> Figure 2
<p>The mechanism of heuristic drift elimination (HDE) algorithm with the assistance of manmade landmarks.</p> "> Figure 3
<p>The principle of array pseudolite.</p> "> Figure 4
<p>Array antennas.</p> "> Figure 5
<p>The first candidates, <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>2</mn> <mi>π</mi> <msub> <mi>d</mi> <mrow> <mi>k</mi> <mn>0</mn> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mo>Δ</mo> <mi>r</mi> </mrow> </semantics></math>.</p> "> Figure 6
<p>The second candidates, <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mi>L</mi> <mo>/</mo> <mo>Δ</mo> <mi>r</mi> </mrow> </semantics></math>.</p> "> Figure 7
<p>The block diagram of the proposed system.</p> "> Figure 8
<p>The experiment route of the pedestrian walking. (<b>a</b>) The indoor part of the pedestrian walking, (<b>b</b>) indoor room and indoor corridors, and the pedestrian walked along yellow-black cross strips.</p> "> Figure 9
<p>The equipment used in this paper. (<b>a</b>) Rover receiver, (<b>b</b>) IMU-based pedestrian navigation system, (<b>c</b>) pseudolite base station, (<b>d</b>) pseudolite antennas.</p> "> Figure 10
<p>The heading of the corridor.</p> "> Figure 11
<p>The generated trajectories. (<b>a</b>) The trajectories of Person A. (<b>b</b>) The trajectories of Person B.</p> "> Figure 12
<p>The result of straight walking detection.</p> "> Figure 13
<p>The trajectories of indoor corridor and indoor room parts of Person A.</p> "> Figure 14
<p>The trajectories of indoor corridor and indoor room parts ignoring positioning error at point A of Person A.</p> "> Figure 15
<p>The trajectories of indoor corridor and indoor room parts ignoring positioning error at point B.</p> "> Figure 16
<p>Evaluation of algorithms. (<b>a</b>) The trajectories of Person A. (<b>b</b>) The trajectories of Person B.</p> "> Figure 17
<p>The residual of interstellar difference. (<b>a</b>) The residual of pseudorange interstellar difference. (<b>b</b>) The residual of carrier phase interstellar difference.</p> ">
Abstract
:1. Introduction
- RTK/Pseudolite/LAHDE/IMU-PDR integrated pedestrian navigation system for urban and indoor environments was proposed. IEZ algorithm was used with the IMU mounted on foot to implement IMU-PDR. RTK was integrated with IMU-PDR outdoors. Meanwhile, in indoor rooms, where GPS is unavailable, pseudolite replaces GPS to integrate with IMU-PDR. The HDE algorithm was introduced to eliminate heading errors under indoor corridor environments where GPS and pseudolite are both unavailable.
- A high-precision indoor positioning method based on carrier phase difference of pseudolite was proposed. Firstly, the hyperbolic positioning method was used to obtain a reliable initial position, and then a local search method based on carrier phase difference (LSMBCPD) with the assistance of IEZ (LSMBCPD-IEZ) was introduced to estimate the subsequent positions.
- Based on the proposed system, the real experiments were carried out in a cooperation scene. The pedestrian walking trajectories included urban, indoor corridors, and indoor room.
2. Materials and Methods
2.1. Zero Velocity Update
2.2. HDE Algorithm with the Assistance of Manmade Landmarks (LAHDE)
2.3. A High-Precision Positioning Method Based on Carrier Phase Difference with the Assistance of IEZ
2.3.1. The Principle of Array Pseudolite
2.3.2. Hyperbolic Positioning
2.3.3. A Local Search Method Based on Carrier Phase Difference with the Assistance of IEZ (LSMBCPD-IEZ)
2.4. The Brief Description of RTK Theory
3. Filter Design
3.1. State Error Model
3.2. Measurement Model
3.2.1. RTK Measurements
3.2.2. Pseudolite Measurements
3.2.3. Velocity Measurements
3.2.4. Heading Measurements
4. Field and Materials
5. Results and Discussion
5.1. The Performance of the Proposed System
5.2. The Performance of the LSMBCPD-IEZ Algorithm
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Borenstein, J.; Feng, L. Gyrodometry: A new method for combining data from gyros, and odometry in mobile robots. In Proceedings of the IEEE International Conference on Robot Automation, Minneapolis, MN, USA, 22–28 April 1996; pp. 423–428. [Google Scholar]
- Foxlin, E. Pedestrian Tracking with Shoe-mounted Inertial Sensors. IEEE Comput. Graph. Appl. 2005, 25, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, J.O.; Skog, I.; Händel, P. Performance characterisation of foot-mounted ZUPT-aided INSs and other related systems. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 15–17 September 2010; pp. 1–7. [Google Scholar]
- Fan, Q.; Zhang, H.; Sun, Y.; Zhu, Y.; Zhuang, X.; Jia, J.; Zhang, P. An Optimal Enhanced Kalman Filter for a ZUPT-Aided Pedestrian Positioning Coupling Model. Sensors 2018, 18, 1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajagopal, S. Personal Dead Reckoning System with Shoe Mounted Inertial Sensors. Master’s Thesis, Department of Royal Institute of Technology (KTH), Stockholm, Sweeden, January 2008. [Google Scholar]
- Borenstein, J.; Ojeda, L. Heuristic Reduction of Gyro Drift in Gyro-Based Vehicle Tracking. Int. J. Veh. Inf. Commun. Syst. 2009, 2, 78–98. [Google Scholar]
- Jiménez, A.R.; Seco, F.; Prieto, J.C.; Guevara, J. Indoor pedestrian navigation using an INS/EKF framework for yaw drift reduction and a foot-mounted IMU. In Proceedings of the Workshop on Positioning Navigation & Communication, Dresden, Germany, 11–12 March 2010; pp. 135–143. [Google Scholar]
- Jiménez, A.R.; Seco, F.; Zampella, F.; Prieto, J.C.; Guevara, J. Improved heuristic drift elimination (iHDE) for pedestrian navigation in complex buildings. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation, Guimaraes, Portugal, 21–23 September 2011; pp. 1–8. [Google Scholar]
- Li, T.; Zhang, H.; Gao, Z.; Chen, Q.; Niu, X. High-Accuracy Positioning in Urban Environments Using Single-Frequency Multi-GNSS RTK/MEMS-IMU Integration. Remote Sens. 2018, 10, 205. [Google Scholar] [CrossRef] [Green Version]
- Niu, Z.; Nie, P.; Tao, L.; Sun, J.; Zhu, B. RTK with the Assistance of an IMU-Based Pedestrian Navigation Algorithm for Smartphones. Sensors 2019, 19, 3228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, J.; Wang, Y.; Li, X.; Qi, H.; Cao, H.; Xu, S. An Adaptive Weighted KNN Positioning Method Based on Omnidirectional Fingerprint Database and Twice Affinity Propagation Clustering. Sensors 2018, 18, 2502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, S.; Lee, C.O.; Han, D. Wi-Fi fingerprint-based approaches following log-distance path loss model for indoor positioning. In Proceedings of the Mtt-s International Microwave Workshop Series on Intelligent Radio for Future Personal Terminals, Daejeon, Korea, 24–25 August 2011. [Google Scholar]
- Devanshi Agrawal, S.; Singh, S. Indoor Localization based on Bluetooth Technology: A Brief Review. Int. J. Comput. Appl. 2014, 97, 31–33. [Google Scholar] [CrossRef]
- Naya, F.; Noma, H.; Ohmura, R.; Kogure, K. Bluetooth-based Indoor Proximity Sensing for Nursing Context Awareness. In Proceedings of the Wearable Computers, Osaka, Japan, 18–21 October 2005; pp. 212–213. [Google Scholar]
- Ni, L.M.; Liu, Y.; Lau, Y.C.; Patil, A.P. LANDMARC: Indoor Location Sensing Using Active RFID. Wirel. Netw. 2004, 10, 701–710. [Google Scholar] [CrossRef]
- Ozdenizci, B.; Ok, K.; Coskun, V.; Aydin, M.N. Development of an Indoor Navigation System Using NFC Technology. In Proceedings of the Information and Computing (ICIC), 2011 Fourth International Conference, Phuket Island, Thailand, 25–27 April 2011. [Google Scholar]
- Tiemann, J.; Eckermann, F.; Wietfeld, C. Multi-user interference and wireless clock synchronization in TDOA-based UWB localization. In Proceedings of the International Conference on Indoor Positioning & Indoor Navigation, Alcala de Henares, Spain, 4–7 October 2016; pp. 1–6. [Google Scholar]
- Pannuto, P. Ultra-wideband and indoor localization. In Proceedings of the Workshop on Hot Topics in Wireless, New York, NY, USA, 3 October 2016. [Google Scholar]
- Holm, S. Ultrasound positioning based on time-of-flight and signal strength. In Proceedings of the 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, Australia, 13–15 November 2013. [Google Scholar]
- Ruiz, A.R.J.; Granja, F.S.; Honorato, J.C.P.; Rosas, J.I.G. Accurate Pedestrian Indoor Navigation by Tightly Coupling Foot-Mounted IMU and RFID Measurements. IEEE Trans. Instrum. Meas. 2012, 61, 178–189. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.G.; Fernandes, D.; Catarino, A.P.; Rocha, A.M.; Monteiro, J.L. A Loose-Coupled Fusion of Inertial and UWB Assisted by a Decision-Making Algorithm for Localization of Emergency Responders. Electronics 2019, 8, 1463. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Chen, X.; Cheng, J.; Zhao, Q.; Wang, Y. Improving tightly-coupled model for indoor pedestrian navigation using foot-mounted IMU and UWB measurements. In Proceedings of the Conference: 2016 IEEE International Instrumentation and Measurement Technology Conference (I2MTC 2016), Taipei, Taiwan, 23–26 May 2016. [Google Scholar]
- Zhuang, Y.; Lan, H.; Li, Y.; El-Sheimy, N. PDR/INS/WiFi Integration Based on Handheld Devices for Indoor Pedestrian Navigation. Micromachines 2015, 6, 793–812. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Ji, Y.F.; Sun, X.Y. Design on Pseudolite Signal TransmitterBased on GPS Navigation System. Radio Eng. 2016, 46, 68–70. [Google Scholar]
- Fujii, K.; Sakamoto, Y.; Wang, W.; Arie, H.; Schmitz, A.; Sugano, S. Hyperbolic Positioning with Antenna Arrays and Multi-Channel Pseudolite for Indoor Localization. Sensors 2015, 15, 25157–25175. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Gan, X.; Yu, B.; Zhang, H.; Li, S.; Cheng, J.; Liang, X.; Wang, B. An Innovation Fingerprint Location Algorithm for Indoor Positioning Based on Array Psedolite. Sensors 2019, 19, 4420. [Google Scholar] [CrossRef] [Green Version]
- Gan, X.; Yu, B.; Huang, L.; Jia, R.; Zhang, H.; Sheng, C.; Fan, G.; Wang, B. Doppler Differential Positioning Technology Using the BDS/GPS Indoor Array Pseudolite System. Sensors 2019, 19, 4580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: http://www.techweb.com.cn/tele/2018-11-08/2711349.shtml (accessed on 21 January 2020).
- Available online: https://cn.amazfit.com/antelope.html (accessed on 23 January 2020).
- Ma, M.; Song, Q.; Gu, Y.; Li, Y.; Zhou, Z. An Adaptive Zero Velocity Detection Algorithm Based on Multi-Sensor Fusion for a Pedestrian Navigation System. Sensors 2018, 18, 3261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Yang, H.; Höflinger, F.; Reindl, L.M. Adaptive Zero Velocity Update Based on Velocity Classification for Pedestrian Tracking. IEEE Sens. J. 2017, 17, 2137–2145. [Google Scholar] [CrossRef]
- Ojeda, L.; Borenstein, J. Non-GPS navigation for security personnel and first responders. J. Navigat. 2007, 60, 391–407. [Google Scholar] [CrossRef] [Green Version]
- Zhu, R.; Wang, Y.; Yu, B.; Gan, X.; Jia, H.; Wang, B. Enhanced heuristic drift elimination with adaptive zero-velocity detection and heading correction algorithms for pedestrian navigation. Sensors 2020, 20, 951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: http://www.unicorecomm.com/files/PDF/Ch/HPL/UB482_UserManual_Ch%20V2.0.pdf (accessed on 15 January 2020).
- Available online: http://file.yizimg.com/516728/2019106-91831645.pdf (accessed on 17 January 2020).
- Abdulrahim, K.; Hide, C.; Moore, T.; Hill, C. Aiding MEMS IMU with building heading for indoor pedestrian navigation. In Proceedings of the 2010 Ubiquitous Positioning Indoor Navigation and Location Based Service, Kirkkonummi, Finland, 14–15 October 2010. [Google Scholar]
Indicators | Quality |
---|---|
1 | Location is unavailable or invalid |
2 | Single point positioning |
3 | Pseudorange differential positioning |
4 | RTK fixed solution |
5 | RTK floating point solution |
6 | Inertial navigation positioning |
7 | Fixed Position |
Location Errors (m) | A | W1 | B | W2 | W3 | W4 | C |
---|---|---|---|---|---|---|---|
IEZ | 9.78 | 14.87 | 14.90 | 15.40 | 14.66 | 14.72 | 15.16 |
RTK/IEZ | 2.47 | 8.38 | 8.73 | 9.35 | 8.66 | 8.69 | 9.10 |
RTK/LAHDE/IEZ | 1.77 | 2.45 | 2.21 | 2.70 | 1.89 | 2.11 | 2.39 |
RTK/Pseudolite/LAHDE/IEZ | 1.77 | 2.45 | 0.27 | 0.31 | 0.22 | 0.35 | 0.67 |
Location Errors (m) of Person A | A | W1 | B | W2 | W3 | W4 | C |
---|---|---|---|---|---|---|---|
RTK/Pseudolite/LAHDE/IEZ | 1.77 | 2.45 | 0.27 | 0.31 | 0.22 | 0.35 | 0.67 |
RTK/Pseudolite/LAHDE/IEZ | 1.06 | 2.03 | 0.22 | 0.27 | 0.36 | 0.29 | 0.81 |
Location Error(m) | W2 | G1 | G2 | W3 | W4 | C |
---|---|---|---|---|---|---|
RTK/LAHDE/IEZ | 0.31 | 0.90 | 0.95 | 0.97 | 0.61 | 1.03 |
RTK/Pseudolite/LAHDE/IEZ | 0.31 | 0.10 | 0.42 | 0.22 | 0.35 | 0.67 |
Location Error(m) of Person B | A | C | B | D | A` |
---|---|---|---|---|---|
The proposed method | 0.10 | 0.08 | 0.14 | 0.10 | 0.13 |
Doppler-based method | 0.13 | 1.36 | 0.73 | 0.64 | 0.32 |
Location Error(m) of Person A | A | B | C | D | E | F | A` |
---|---|---|---|---|---|---|---|
The proposed method | 0.10 | 0.13 | 0.14 | 0.173 | 0.21 | 0.11 | 0.15 |
Doppler-based method | 0.10 | 0.19 | 0.21 | 0.41 | 0.32 | 0.145 | 0.20 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, R.; Wang, Y.; Cao, H.; Yu, B.; Gan, X.; Huang, L.; Zhang, H.; Li, S.; Jia, H.; Chen, J. RTK/Pseudolite/LAHDE/IMU-PDR Integrated Pedestrian Navigation System for Urban and Indoor Environments. Sensors 2020, 20, 1791. https://doi.org/10.3390/s20061791
Zhu R, Wang Y, Cao H, Yu B, Gan X, Huang L, Zhang H, Li S, Jia H, Chen J. RTK/Pseudolite/LAHDE/IMU-PDR Integrated Pedestrian Navigation System for Urban and Indoor Environments. Sensors. 2020; 20(6):1791. https://doi.org/10.3390/s20061791
Chicago/Turabian StyleZhu, Ruihui, Yunjia Wang, Hongji Cao, Baoguo Yu, Xingli Gan, Lu Huang, Heng Zhang, Shuang Li, Haonan Jia, and Jianqiang Chen. 2020. "RTK/Pseudolite/LAHDE/IMU-PDR Integrated Pedestrian Navigation System for Urban and Indoor Environments" Sensors 20, no. 6: 1791. https://doi.org/10.3390/s20061791