Real-Time Weld Quality Prediction Using a Laser Vision Sensor in a Lap Fillet Joint during Gas Metal Arc Welding
<p>Schematic of a laser vision system.</p> "> Figure 2
<p>Experimental setup of a welding system with an LVS.</p> "> Figure 3
<p>Schematics of the torch position, welding position, and tested workpiece. (<b>a</b>) Flat position; (<b>b</b>) Horizontal position.</p> "> Figure 4
<p>Thresholding operation used to identify the laser line. (<b>a</b>) Original image; (<b>b</b>) Image after global thresholding; (<b>c</b>) Image after adaptive thresholding.</p> "> Figure 5
<p>Contouring and thinning operations. (<b>a</b>) Contouring operation; (<b>b</b>) Thinning operation; (<b>c</b>) Resultant laser line after image processing.</p> "> Figure 6
<p>Coordinate systems of the laser vision system.</p> "> Figure 7
<p>Calibration process for the (<b>a</b>) <span class="html-italic">X<sub>w</sub></span> and (<b>b</b>) <span class="html-italic">Z<sub>w</sub></span> rotation errors.</p> "> Figure 8
<p>Calibration results of the (<b>a</b>) <span class="html-italic">X<sub>w</sub></span> and (<b>b</b>) <span class="html-italic">Z<sub>w</sub></span> rotation errors.</p> "> Figure 9
<p>Measurement errors in the cases of complex rotation. (<b>a</b>) Errors in <span class="html-italic">Z<sub>w</sub></span> axis direction; (<b>b</b>) Errors in <span class="html-italic">X<sub>w</sub></span> axis direction.</p> "> Figure 10
<p>Weld bead parameter. (<b>a</b>) L1, L2, and L3; (<b>b</b>) θ1, θ2, and penetration; (<b>c</b>) A1 and leg length.</p> "> Figure 11
<p>Comparison between LVS and optical microscopic (OM) measurements: (<b>a</b>) L1, (<b>b</b>) L2, (<b>c</b>) L3, (<b>d</b>) θ1, (<b>e</b>) θ2, and (<b>f</b>) A1.</p> "> Figure 12
<p>Structure of the DNN models for penetration, leg length, and tensile strength.</p> "> Figure 13
<p>Verification of DNN prediction models for (<b>a</b>) penetration, (<b>b</b>) leg length, and (<b>c</b>) tensile strength.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laser Vision System
2.2. Experimental Procedure
3. Development of an LVS
3.1. Image Processing Algorithm
3.2. Camera Calibration
3.3. Geometric Feature Extraction of Weld Joint
3.4. Real-Time Implementation and Verification of the LVS
4. Prediction Models for the Estimation of Penetration, Leg Length, and Tensile Strength
4.1. DNN Models
4.2. Verification of Prediction Models
5. Conclusions
- First, we proposed a three-step image processing algorithm which consisted of thresholding, contouring, and thinning to identify the weld bead profile
- Second, we proposed a camera calibration method that could considerably reduce measurement errors generated by the arbitrary 3D rotations of the LVS, which was installed at the welding robot. This method extracted more accurate weld bead profiles based on the rotations of the measured image data or the rotations and sectioned image data with the use of the rotation angle of the LVS measured by a six-axis gyro sensor
- We also developed DNN models that could predict penetration, leg length, and tensile strength, at different welding process parameters. Accordingly, the geometrical features were measured by the LVS. The R2 values of all the prediction models were > 0.92
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Juraeva, M.; Ryu, K.J.; Noh, S.H.; Song, D.J. Lightweight material for the speed reducer housing of a car chassis. J. Mech. Sci. Technol. 2017, 31, 3219–3224. [Google Scholar] [CrossRef]
- Murakami, Y. The Rainflow Method in Fatigue: The Tatsuo Endo Memorial Volume, 1st ed.; Butterworth-Heinemann Ltd.: Oxford, UK, 1992; pp. 112–120. [Google Scholar]
- ASM International. ASM Handbook, 6th ed.; ASM International: Materials Park, OH, USA, 1996; Volume 19, pp. 227–249. [Google Scholar]
- Park, Y.K.; Shin, J.G. Fatigue strength evaluation of a welded structure by a concentrated load close to the welded joint. J. Mech. Sci. Technol. 2017, 31, 1789–1796. [Google Scholar] [CrossRef]
- Ahsan, M.R.U.; Kim, Y.R.; Ashiri, R.; Cho, Y.J.; Jeong, C.J.; Park, Y.D. Cold metal transfer (CMT) GMAW of zinc-coated steel. Weld J. 2016, 95, 120–132. [Google Scholar]
- Sinha, A.K.; Kim, D.Y.; Ceglarek, D. Correlation analysis of the variation of weld seam and tensile strength in laser welding of galvanized steel. Opt. Lasers Eng. 2013, 51, 1143–1152. [Google Scholar] [CrossRef]
- Hwang, I.; Kim, D.-Y.; Jeong, G.; Kang, M.; Kim, D.-C.; Kim, Y.-M. Effect of Weld Bead Shape on the Fatigue Behavior of GMAW Lap Fillet Joint in GA 590 MPa Steel Sheets. Metals 2017, 7, 399. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.T.; Khosrovaneh, A.; Link, T.; Bonnen, J.; Amaya, M.; Shih, H.-C. The Effect of Welding Dimensional Variability on the Fatigue Life of Gas Metal Arc Welded Joints. SAE Int. J. Mater. Manuf. 2011, 4, 298–313. [Google Scholar] [CrossRef]
- Joaquin, A.; Elliott, A.N.A.; Jiang, C.; Rajan, V.; Hartman, D.; Karas, C. Gas Metal Arc Welding of Advanced High Strength Steel—Developments for Optimized Welding Control and Weld Quality. SAE Tech. Pap. Ser. 2006, 233–238. [Google Scholar] [CrossRef]
- Lee, H.; Ji, C.; Yu, J. Effects of welding current and torch position parameters on bead geometry in cold metal transfer welding. J. Mech. Sci. Technol. 2018, 32, 4335–4343. [Google Scholar] [CrossRef]
- Zeng, J.; Cao, G.; Peng, Y.-P.; Huang, S.-D. A Weld Joint Type Identification Method for Visual Sensor Based on Image Features and SVM. Sensors 2020, 20, 471. [Google Scholar] [CrossRef] [Green Version]
- Lopera, J.E.P.; Motta, J.M.S.T.; Alfaro, S.C.A. Real-Time Measurement of Width and Height of Weld Beads in GMAW Processes. Sensors 2016, 16, 1500. [Google Scholar] [CrossRef]
- Suyama, F.M.; Delgado, M.R.; Da Silva, R.D.; Centeno, T.M. Deep neural networks based approach for welded joint detection of oil pipelines in radiographic images with Double Wall Double Image exposure. NDT E Int. 2019, 105, 46–55. [Google Scholar] [CrossRef]
- Zou, Y.; Chen, T. Laser vision seam tracking system based on image processing and continuous convolution operator tracker. Opt. Lasers Eng. 2018, 105, 141–149. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, Y.; Zhou, W.; Chen, X. Real-time seam tracking control system based on line laser visions. Opt. Laser Technol. 2018, 103, 182–192. [Google Scholar] [CrossRef]
- Zhang, K.; Yan, M.; Huang, T.; Zheng, J.; Li, Z. 3D reconstruction of complex spatial weld seam for autonomous welding by laser structured light scanning. J. Manuf. Process. 2019, 39, 200–207. [Google Scholar] [CrossRef]
- Xue, B.; Chang, B.; Peng, G.; Gao, Y.; Tian, Z.; Du, D.; Wang, G. A Vision Based Detection Method for Narrow Butt Joints and a Robotic Seam Tracking System. Sensors 2019, 19, 1144. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.-Q.; Lee, J.-P.; Park, M.-H.; Jin, B.-J.; Kim, D.-H.; Park, C.-K.; Kim, I.-S. A study on the modified Hough algorithm for image processing in weld seam tracking. J. Mech. Sci. Technol. 2015, 29, 4859–4865. [Google Scholar] [CrossRef]
- Huang, W.; Kovacevic, R. A Laser-Based Vision System for Weld Quality Inspection. Sensors 2011, 11, 506–521. [Google Scholar] [CrossRef]
- Huang, W.; Kovacevic, R. Development of a real-time laser-based machine vision system to monitor and control welding processes. Int. J. Adv. Manuf. Technol. 2012, 63, 235–248. [Google Scholar] [CrossRef]
- Nguyen, H.-C.; Lee, B.R. Laser-vision-based quality inspection system for small-bead laser welding. Int. J. Precis. Eng. Manuf. 2014, 15, 415–423. [Google Scholar] [CrossRef]
- Ye, G.; Guo, J.; Sun, Z.; Li, C.; Zhong, S. Weld bead recognition using laser vision with model-based classification. Robot. Comput. Manuf. 2018, 52, 9–16. [Google Scholar] [CrossRef]
- Shin, S.; Jin, C.; Yu, J.; Rhee, S. Real-time detection of weld defects for automated welding process base on deep neural network. Metals 2020. under review. [Google Scholar]
- Zhang, Y.; You, D.; Gao, X.; Wang, C.; Li, Y.; Gao, P.P. Real-time monitoring of high-power disk laser welding statuses based on deep learning framework. J. Intell. Manuf. 2019, 1–16. [Google Scholar] [CrossRef]
- Kaehler, A.; Bradski, G. Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library, 1st ed.; Schanafelt, D., Brown, K., Eds.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017; pp. 249–298. [Google Scholar]
- Yu, J.; Kim, J.; Yook, W.; Lee, C.-Y.; Jang, S.; Chung, Y.-D. Prediction and control of weld bead geometry for improving mechanical performance in gas metal arc welding. J. Korean Weld. Join. Soc. 2017, 123. [Google Scholar] [CrossRef] [Green Version]
Material | Thickness (mm) | Tensile Strength (MPa) | Chemical Composition (wt%) | |||||
---|---|---|---|---|---|---|---|---|
C | Si | Mn | P | S | Fe | |||
SPFH590 | 2.3 | 590 | 0.07 | 0.14 | 1.44 | 0.013 | 0.002 | Bal. |
Welding Process | CMT | DC Standard |
---|---|---|
Wire feeding speed [current/voltage] (m/min, A, V) | 3.0 [115 A/13.3 V] | 3.0 [132 A/16.6 V] |
4.0 [139 A/14.3 V] | 4.0 [162 A/17.7 V] | |
5.0 [165 A/15.2 V] | 5.0 [186 A/19.1 V] | |
6.0 [195 A/15.5 V] | 6.0 [217 A/21.0 V] | |
7.0 [214 A/16.2 V] | 7.0 [238 A/23.2 V] | |
Welding position | Flat position (PA), horizontal position (PC) | |
Gap (mm) | 0, 0.1, 0.2, 0.5, 1.0 | |
Welding speed (cm/min) | 100 | |
CTWD (mm) | 15 | |
Work angle (°) | 45 | |
Travel angle (°) | 0 |
Item | Yw Rotation Error (Yw: Welding Direction) | Xw Rotation Error | Zw Rotation Error |
---|---|---|---|
LVSmovement | |||
Error in a bead shape | |||
Description | Distortion in weld position | Distortion in bead height | Distortion in bead width |
Measured Data | Calibrated Data | |
---|---|---|
2.5° | ||
5.0° | ||
10.0° |
Feature | Average Error (%) |
---|---|
L1 | 3.2 |
L2 | 7.5 |
L3 | 2.2 |
θ1 | 4.0 |
θ2 | 8.0 |
A1 | 6.2 |
Item | Penetration Model | Leg Length Model | Tensile Strength Model |
---|---|---|---|
Training error (%) | 5.55 | 1.05 | 2.64 |
Validation error (%) | 14.98 | 6.29 | 3.95 |
Test error (%) | 12.04 | 6.03 | 4.42 |
Total error (%) | 7.89 | 2.59 | 3.11 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Hwang, I.; Kim, Y.-M.; Lee, H.; Kang, M.; Yu, J. Real-Time Weld Quality Prediction Using a Laser Vision Sensor in a Lap Fillet Joint during Gas Metal Arc Welding. Sensors 2020, 20, 1625. https://doi.org/10.3390/s20061625
Lee K, Hwang I, Kim Y-M, Lee H, Kang M, Yu J. Real-Time Weld Quality Prediction Using a Laser Vision Sensor in a Lap Fillet Joint during Gas Metal Arc Welding. Sensors. 2020; 20(6):1625. https://doi.org/10.3390/s20061625
Chicago/Turabian StyleLee, Kidong, Insung Hwang, Young-Min Kim, Huijun Lee, Munjin Kang, and Jiyoung Yu. 2020. "Real-Time Weld Quality Prediction Using a Laser Vision Sensor in a Lap Fillet Joint during Gas Metal Arc Welding" Sensors 20, no. 6: 1625. https://doi.org/10.3390/s20061625
APA StyleLee, K., Hwang, I., Kim, Y. -M., Lee, H., Kang, M., & Yu, J. (2020). Real-Time Weld Quality Prediction Using a Laser Vision Sensor in a Lap Fillet Joint during Gas Metal Arc Welding. Sensors, 20(6), 1625. https://doi.org/10.3390/s20061625