Design and Control of a Polycentric Knee Exoskeleton Using an Electro-Hydraulic Actuator
<p>Overview of knee anatomy: (<b>a</b>) anatomical structure of the human knee; (<b>b</b>) changes in the shape and tension of the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL).</p> "> Figure 2
<p>Range of motion of the designed polycentric knee exoskeleton: (<b>a</b>) design modeling of the polycentric knee exoskeleton; (<b>b</b>) normal angle and workspace of the robot during the gait cycle.</p> "> Figure 3
<p>Design of the knee structure and determination of the number of degrees of freedom (DoF): (<b>a</b>) calculation point of the degrees of freedom; (<b>b</b>) configuration of a polycentric knee with coupler point <math display="inline"><semantics> <mi>P</mi> </semantics></math>. ICR is instantaneous center of rotation.</p> "> Figure 4
<p>Decision of coupler point <math display="inline"><semantics> <msup> <mi>P</mi> <mo>′</mo> </msup> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>o</mi> <mi>d</mi> </mrow> </msub> </mrow> </semantics></math> to calculate actuator length.</p> "> Figure 5
<p>Polynomial curve fitting: (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mi>p</mi> </msub> </mrow> </semantics></math> to <math display="inline"><semantics> <mi>x</mi> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mi>x</mi> </semantics></math> to <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mi>p</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 6
<p>Schematic diagram of an axial-piston pump: cam plate; shaft; cylinder block and piston shoes; cylinder valve.</p> "> Figure 7
<p>Structure of the hydraulic single-rod cylinder.</p> "> Figure 8
<p>Sliding mode control scheme.</p> "> Figure 9
<p>Simulation results of sliding mode control: (<b>a</b>) results of position performance in mm; (<b>b</b>) tracking error in mm.</p> "> Figure 10
<p>The overall experimental setup attached to a rigid body.</p> "> Figure 11
<p>The experimental setup: (<b>a</b>) hardware configuration including encoder, loadcell, and force-sensing resistor (FSR); (<b>b</b>) schematic of experimental configuration; (<b>c</b>) EHA unit with motor and pump; (<b>d</b>) microcontroller unit and motor driver for motor control.</p> "> Figure 12
<p>Experimental results of sliding mode control and proportional-integral-differential (PID) control: (<b>a</b>,<b>c</b>,<b>e</b>) results of angular position performance; (<b>b</b>,<b>d</b>,<b>f</b>) angle tracking error.</p> "> Figure 13
<p>Driving capacity as frequency changes: (<b>a</b>) magnitude variation in angle tracking; (<b>b</b>) phase variation in angle tracking.</p> ">
Abstract
:1. Introduction
2. Mechanism Design of the Polycentric Knee Joint
3. Mathematical Modeling of the Entire System, Including the EHA
4. Design of a Sliding Mode Control
5. Experimental Setting and Results
6. Discussion
7. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DoF | Degree of freedom |
EHA | Electro-hydraulic actuator |
SMC | Sliding mode controller |
ACL | Anterior cruciate ligament |
PCL | Posterior cruciate ligament |
ICR | Instantaneous center of rotation |
SEA | Series elastic actuator |
HA | Hydraulic actuator |
ROM | Range of motion |
MCU | Microcontroller unit |
SSE | Sum of square error |
RMSE | Root mean square error |
BLDC | Brushless DC |
I/O | Input/output |
CAN | Controller area network |
SPI | Serial peripheral interface |
FSR | Force-sensing resistor |
PID | Proportional-integral-differential |
PCHIP | Piecewise cubic Hermite interpolation |
Nomenclature | |
Relative angle between the ground link and the point within the coupler | |
Position | |
Coefficients of polynomial with respect to | |
Coefficients of polynomial with respect to | |
Ideal volumetric displacement of the motor | |
Motor shaft speed | |
Return flow from motor in pump, supplied flow in cylinder | |
Forward flow to motor in pump, return flow in cylinder | |
Internal or cross-port leakage coefficient | |
External leakage coefficient | |
Pressure in the return chamber | |
Pressure in the forward chamber | |
Load flow | |
Pressure difference | |
Two chambers of initial condition | |
Bulk modulus | |
Reference pressure | |
Coefficient of the internal leakage | |
Coefficient of the external leakage from the return chamber | |
Coefficient of the external leakage from the forward chamber | |
Area of each chamber | |
Total hydraulic actuator volume | |
Average of cross-sectional area of chamber | |
Mass of the load | |
Damping coefficient | |
Spring coefficient | |
Disturbance | |
Motor shaft speed, control input | |
Scaling factor | |
Sliding surface | |
Strictly positive constant | |
Desired position | |
Tracking error | |
Design parameter | |
Boundary layer thickness |
References
- Blank, A.A.; French, J.A.; Pehlivan, A.U.; O’Malley, M.K. Current trends in robot-assisted upper-limb stroke rehabilitation: Promoting patient engagement in therapy. Curr. Phys. Med. Rehabilit. Rep. 2014, 2, 184–195. [Google Scholar] [CrossRef]
- Dzahir, M.A.M.; Yamamoto, S.I. Recent trends in lower-limb robotic rehabilitation orthosis: Control scheme and strategy for pneumatic muscle actuated gait trainers. Robotics 2014, 3, 120–148. [Google Scholar] [CrossRef] [Green Version]
- United Nations, Department of Economic and Social Affairs. Available online: https://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2017_Highlights.pdf (accessed on 11 December 2019).
- Pirker, W.; Katzenschlager, R. Gait disorders in adults and the elderly. Wien. Klin. Wochenschr. 2017, 129, 81–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nef, T.; Mihelj, M.; Kiefer, G.; Perndl, C.; Muller, R.; Riener, R. ARMin-Exoskeleton for arm therapy in stroke patients. In Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, 13–15 June 2007; pp. 68–74. [Google Scholar]
- Visintin, M.; Barbeau, H.; Korner-Bitensky, N.; Mayo, N.E. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke 1998, 29, 1122–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, W.; Liu, Q.; Zhou, Z.; Ai, Q.; Sheng, B.; Xie, S.S. Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics 2015, 31, 132–145. [Google Scholar] [CrossRef]
- Riener, R.; Lünenburger, L.; Maier, I.C.; Colombo, G.; Dietz, V. Locomotor training in subjects with sensori-motor deficits: An overview of the robotic gait orthosis lokomat. J. Healthc. Eng. 2010, 1, 197–216. [Google Scholar] [CrossRef] [Green Version]
- Esquenazi, A.; Talaty, M.; Packel, A.; Saulino, M. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am. J. Phys. Med. Rehabilit. 2012, 91, 911–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawamoto, H.; Sankai, Y. Power assist method based on phase sequence and muscle force condition for HAL. Adv. Robot. 2005, 19, 717–734. [Google Scholar] [CrossRef]
- Cenciarini, M.; Dollar, A.M. Biomechanical considerations in the design of lower limb exoskeletons. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–6. [Google Scholar]
- Colombo, G.; Joerg, M.; Schreier, R.; Dietz, V. Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabilit. Res. Dev. 2000, 37, 693–700. [Google Scholar]
- Colombo, G.; Wirz, M.; Dietz, V. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spin. Cord 2001, 39, 252. [Google Scholar] [CrossRef] [Green Version]
- Veneman, J.F.; Kruidhof, R.; Hekman, E.E.; Ekkelenkamp, R.; Van Asseldonk, E.H.; Van Der Kooij, H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans. Neural Syst. Rehabilit. Eng. 2007, 15, 379–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Kooij, H.; Veneman, J.; Ekkelenkamp, R. Design of a compliantly actuated exo-skeleton for an impedance controlled gait trainer robot. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 189–193. [Google Scholar]
- Veneman, J.F.; Ekkelenkamp, R.; Kruidhof, R.; van der Helm, F.C.; van der Kooij, H. A series elastic-and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. Int. J. Robot. Res. 2006, 25, 261–281. [Google Scholar] [CrossRef]
- Beyl, P.; Knaepen, K.; Duerinck, S.; Van Damme, M.; Vanderborght, B.; Meeusen, R.; Lefeber, D. Safe and compliant guidance by a powered knee exoskeleton for robot-assisted rehabilitation of gait. Adv. Robot. 2011, 25, 513–535. [Google Scholar] [CrossRef]
- Beyl, P.; Van Damme, M.; Van Ham, R.; Vanderborght, B.; Lefeber, D. Design and control of a lower limb exoskeleton for robot-assisted gait training. Appl. Bionics Biomech. 2009, 6, 229–243. [Google Scholar] [CrossRef] [Green Version]
- Banala, S.K.; Agrawal, S.K.; Scholz, J.P. Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. In Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, 13–15 June 2007; pp. 401–407. [Google Scholar]
- Horst, R.W. A bio-robotic leg orthosis for rehabilitation and mobility enhancement. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 5030–5033. [Google Scholar]
- Goldblatt, J.P.; Richmond, J.C. Anatomy and biomechanics of the knee. Oper. Tech. Sports Med. 2003, 11, 172–186. [Google Scholar] [CrossRef]
- Gunston, F.H. Polycentric knee arthroplasty: Prosthetic simulation of normal knee movement. J. Bone Jt. Surg. Br. Vol. 1971, 53, 272–277. [Google Scholar] [CrossRef]
- Radcliffe, C. Four-bar linkage prosthetic knee mechanisms: Kinematics, alignment and prescription criteria. Prosthet. Orthot. Int. 1994, 18, 159–173. [Google Scholar]
- Veale, A.J.; Xie, S.Q. Towards compliant and wearable robotic orthoses: A review of current and emerging actuator technologies. Med. Eng. Phys. 2016, 38, 317–325. [Google Scholar] [CrossRef]
- Pratt, J.E.; Krupp, B.T. Series elastic actuators for legged robots. In Proceedings of the Unmanned Ground Vehicle Technology Vi, Orlando, FL, USA, 2 September 2004; pp. 135–144. [Google Scholar]
- Winfree, K.N.; Stegall, P.; Agrawal, S.K. Design of a minimally constraining, passively supported gait training exoskeleton: ALEX II. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–6. [Google Scholar]
- Lin, Y.; Shi, Y.; Burton, R. Modeling and robust discrete-time sliding-mode control design for a fluid power electrohydraulic actuator (EHA) system. IEEE/ASME Trans. Mechatron. 2011, 18, 1–10. [Google Scholar] [CrossRef]
- Guan, C.; Pan, S. Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters. Control Eng. Pract. 2008, 16, 1275–1284. [Google Scholar] [CrossRef]
- Guan, C.; Pan, S. Nonlinear adaptive robust control of single-rod electro-hydraulic actuator with unknown nonlinear parameters. IEEE Trans. Control Syst. Technol. 2008, 16, 434–445. [Google Scholar] [CrossRef]
- Cho, S.; Park, J.; Kwon, O. Gender differences in three dimensional gait analysis data from 98 healthy Korean adults. Clin. Biomech. 2004, 19, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.; Davids, J.R. Gait analysis: Normal and pathological function. J. Pediatr. Orthop. 1992, 12, 815. [Google Scholar] [CrossRef]
- McCarthy, J.M.; Soh, G.S. Geometric Design of Linkages; Science & Business Media: Berlin, Germany, 2010; Volume 11. [Google Scholar]
- Uicker, J.J.; Pennock, G.R.; Shigley, J.E. Theory of Machines and Mechanisms; Oxford University Press: New York, NY, USA, 2011; Volume 1. [Google Scholar]
- Petuya, V.; Macho, E.; Altuzarra, O.; Pinto, C.; Hernandez, A. Educational software tools for the kinematic analysis of mechanisms. Comput. Appl. Eng. Educ. 2014, 22, 72–86. [Google Scholar] [CrossRef]
- Torfason, L.; Hobson, D. Computer optimization of polycentric prosthetic knee mechanisms. In Proceedings of the Third Applied Mechanisms Conference, Stillwater, Oklahoma, November 1973. [Google Scholar]
- Kurowski, P. Engineering Analysis with SolidWorks Simulation 2013; SDC Publications: Mission, KS, USA, 2013. [Google Scholar]
- Merritt, H.E. Hydraulic Control Systems; John Wiley & Sons: Hoboken, NJ, USA, 1991. [Google Scholar]
- Yao, B.; Bu, F.; Reedy, J.; Chiu, G.-C. Adaptive robust motion control of single-rod hydraulic actuators: Theory and experiments. IEEE/ASME Trans. Mechatron. 2000, 5, 79–91. [Google Scholar]
- Ruderman, M. Full-and reduced-order model of hydraulic cylinder for motion control. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October –1 November 2017; pp. 7275–7280. [Google Scholar]
- Slotine, J.J.E.; Li, W. Applied Nonlinear Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1991; Volume 199. [Google Scholar]
- Hassrizal, H.; Rossiter, J. Application of decaying boundary layer and switching function method thorough error feedback for sliding mode control on spacecraft’s attitude. In Proceedings of the 2017 25th Mediterranean Conference on Control and Automation (MED), Valletta, Malta, 3–6 July 2017; pp. 1250–1256. [Google Scholar]
- Piltan, F.; Emamzadeh, S.; Hivand, Z.; Shahriyari, F.; Mirazaei, M. PUMA-560 robot manipulator position sliding mode control methods using MATLAB/SIMULINK and their integration into graduate/undergraduate nonlinear control, robotics and MATLAB courses. Int. J. Robot. Autom. 2012, 3, 106–150. [Google Scholar]
-Value | -Value | ||
---|---|---|---|
1.571 × 10−8 | –1.807 × 10−9 | ||
–4.164 × 10−6 | 5.788 × 10−7 | ||
0.0004789 | –7.285 × 10−5 | ||
–0.03192 | 0.004161 | ||
–0.6195 | –0.6389 | ||
148 | 91.73 |
Parameter | Specification |
---|---|
Component | Parameter | Specification | Component | Parameter | Specification |
---|---|---|---|---|---|
Hydraulic cylinder | Bore size | 20 mm | Motor | Input voltage | 24 V |
Rod size | 10 mm | Watts | 200 W | ||
Maximum allowable pressure | 3.5 MPa | Speed limit | 5000 rpm | ||
Stroke length | 150 mm | MCU | System clock | 200 MHz | |
Hydraulic pump | Displacement | 0.8 cc | Interrupt time | 0.002 s | |
Hydraulic oil | Model | ISO VG 46 | Mass | Weight | 1.6 kg (shank) |
Bulk modulus | 17,200 bar | Encoder | Degree | 0–360° |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, T.; Lee, D.; Song, B.; Baek, Y.S. Design and Control of a Polycentric Knee Exoskeleton Using an Electro-Hydraulic Actuator. Sensors 2020, 20, 211. https://doi.org/10.3390/s20010211
Lee T, Lee D, Song B, Baek YS. Design and Control of a Polycentric Knee Exoskeleton Using an Electro-Hydraulic Actuator. Sensors. 2020; 20(1):211. https://doi.org/10.3390/s20010211
Chicago/Turabian StyleLee, Taesik, Dongyoung Lee, Buchun Song, and Yoon Su Baek. 2020. "Design and Control of a Polycentric Knee Exoskeleton Using an Electro-Hydraulic Actuator" Sensors 20, no. 1: 211. https://doi.org/10.3390/s20010211