In Situ Characterization of Micro-Vibration in Natural Latex Membrane Resembling Tympanic Membrane Functionally Using Optical Doppler Tomography
<p>(<b>a</b>) Single cosine wave, which amplitude exceeds the intended range. (<b>b</b>) Wrapping phase graph of (<b>a</b>). (<b>c</b>) Amplitude-controlled cosine waveform. (<b>d</b>) 2D phase mapping image of (<b>b</b>). (<b>e</b>) 2D phase mapping image of (<b>c</b>).</p> "> Figure 2
<p>(<b>a</b>) Schematic of the Optical Doppler tomography (ODT) system. BLS, broadband laser source; C, collimator; DG, diffraction grating; FC, fiber coupler; GS, Galvanometer scanner; L, lens; LC, line scanning camera; LM, latex membrane; M, mirror; SP, speaker. (<b>b</b>) Software algorithm of the parallel signal processing for the Doppler experiment.</p> "> Figure 3
<p>The quantified sound pressure graphs of applied sound using a single and dual speaker. (<b>a</b>) Detected positions of sound pressure in the latex membrane (A–E). (<b>b</b>) Detected sound pressures within the frequency range of 2 kHz to 5 kHz using single speaker configuration. (<b>c</b>) Detected sound pressures with equivalent condition of (<b>b</b>) using dual speaker configuration. (<b>d</b>) Comparative graphical analysis of the obtained results using single speaker and dual speaker configuration.</p> "> Figure 4
<p>Two dimensional optical coherence tomography (2D-OCT) and Optical Doppler tomography (ODT) images acquired before and after exposing the latex membrane to the sound waves. (<b>a</b>) 2D-OCT image of latex membrane before applying sound. (<b>d</b>) 2D-OCT image of vibrating latex membrane. After Doppler image processing, (<b>b</b>,<b>e</b>) are 2D-ODT images with severe noise. (<b>c</b>,<b>f</b>) are processed 2D-ODT images with an algorithm to subtract phase differences before and after sound is applied, eliminating unnecessary noise at (<b>b</b>,<b>e</b>). (<b>g</b>–<b>i</b>) are indicated the phase data of (<b>b</b>), (<b>e</b>) and (<b>f</b>), respectively.</p> "> Figure 5
<p>Process to obtain 2D-ODT enface image representations. (<b>a</b>–<b>d</b>) Process of 2D-ODT enface image extraction. (<b>a</b>–<b>c</b>) depict acquisition of uppermost cross-sectional information. (<b>d</b>) Total ODT-enface representation at 2 kHz frequency. (<b>e</b>–<b>h</b>) show the ODT enface image variations according at 2.2 kHz, 2.8 kHz, 3.1 kHz and 3.2 kHz frequencies, respectively.</p> "> Figure 6
<p>Graphical analysis based on data of 2D ODT surface images. Images (<b>a</b>–<b>e</b>) are using averaged raw phase data for scanning position and its respective vibrations obtained by varying frequency at 2, 2.2, 2.8, 3.1 and 3.2 kHz. The x axis represents the position of latex membrane, and the y axis indicates phase information from − 3 to +3 in all five graphs. Blue arrows at (<b>a</b>–<b>e</b>) show the points of counting phase reversal. Graph (<b>f</b>) depicts the number of phase reversals and averaged vibrating distance for each frequency, and (<b>f</b>) is plotted using the obtained data of (<b>a</b>–<b>e</b>). LM, latex membrane.</p> ">
Abstract
:1. Introduction
2. Materials and Method
2.1. Experimental Specimen Preparation
2.2. Description of the ODT System Configurations
2.3. Principles of ODT Imaging and Processing
3. Results
3.1. Analysis of the Reasons for Using Dual Speakers
3.2. OCT and ODT Cross-Sectional Assessments for Micro-Vibrations
3.3. Enface-ODT Representation with Distinct Frequencies
3.4. Phase Shift Assessment of Latex Membrane Micro-Vibrations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Volandri, G.; Di Puccio, F.; Forte, P.; Carmignani, C. Biomechanics of the tympanic membrane. J. Biomech. 2011, 44, 1219–1236. [Google Scholar] [CrossRef]
- Tonndorf, J.; Khanna, S.M. The role of the tympanic membrane in middle ear transmission. Ann. Otol. Rhinol. Laryngol. 1970, 79, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Majima, Y.; Takeuchi, K.; Hamaguchi, Y.; Morishita, A.; Hirata, K.; Sakakura, Y. Hearing impairment in relation to viscoelasticity of middle ear effusions in children. Ann. Otol. Rhinol. Laryngol. 1988, 97, 272–274. [Google Scholar] [CrossRef] [PubMed]
- Chole, R.A.; McKenna, M. Pathophysiology of otosclerosis. Otol. Neurotol. 2001, 22, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.R.; Niparko, J.K.; Ferrucci, L. Hearing loss prevalence in the United States. Arch. Intern. Med. 2011, 171, 1851–1853. [Google Scholar] [CrossRef]
- Liu, X.; Yan, D. Ageing and hearing loss. J. Pathol. 2007, 211, 188–197. [Google Scholar] [CrossRef]
- Moore, D.R.; Hine, J.E.; Jiang, Z.D.; Matsuda, H.; Parsons, C.H.; King, A.J. Conductive hearing loss produces a reversible binaural hearing impairment. J. Neurosci. 1999, 19, 8704–8711. [Google Scholar] [CrossRef]
- Schreiber, B.E.; Agrup, C.; Haskard, D.O.; Luxon, L.M. Sudden sensorineural hearing loss. Lancet 2010, 375, 1203–1211. [Google Scholar] [CrossRef]
- Rosowski, J.J.; Cheng, J.T.; Merchant, S.N.; Harrington, E.; Furlong, C. New data on the motion of the normal and reconstructed tympanic membrane. Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2011, 32, 1559. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Ogiba, Y. Conditioned orientation reflex audiometry: A new technique for pure-tone audiometry in young children under 3 years of age. Arch. Otolaryngol. 1961, 74, 192–198. [Google Scholar] [CrossRef]
- Olsho, L.W.; Koch, E.G.; Carter, E.A.; Halpin, C.F.; Spetner, N.B. Pure-tone sensitivity of human infants. J. Acoust. Soc. Am. 1988, 84, 1316–1324. [Google Scholar] [CrossRef] [PubMed]
- Kujawa, S.G.; Liberman, M.C. Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. J. Neurosci. 2009, 29, 14077–14085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whittemore, K.R., Jr.; Merchant, S.N.; Poon, B.B.; Rosowski, J.J. A normative study of tympanic membrane motion in humans using a laser Doppler vibrometer (LDV). Hear. Res. 2004, 187, 85–104. [Google Scholar] [CrossRef]
- Cheng, J.T.; Hamade, M.; Merchant, S.N.; Rosowski, J.J.; Harrington, E.; Furlong, C. Wave motion on the surface of the human tympanic membrane: Holographic measurement and modeling analysis. J. Acoust. Soc. Am. 2013, 133, 918–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosowski, J.J.; Nakajima, H.H.; Merchant, S.N. Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears. Ear Hear. 2008, 29, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakob, A.; Bornitz, M.; Kuhlisch, E.; Zahnert, T. New aspects in the clinical diagnosis of otosclerosis using laser Doppler vibrometry. Otol. Neurotol. 2009, 30, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Foth, H.-J.; Huthoff, C.; Stasche, N.; Hoermann, K. Measuring the motion of the human tympanic membrane by laser Doppler vibrometry: Basic principles and technical aspects. In Proceedings of Microscopy, Holography, and Interferometry in Biomedicine; International Society for Optics and Photonics: Budapest, Hungary, 1994; pp. 250–263. [Google Scholar]
- Wang, X.; Guan, X.; Pineda, M.; Gan, R.Z. Motion of tympanic membrane in guinea pig otitis media model measured by scanning laser Doppler vibrometry. Hear. Res. 2016, 339, 184–194. [Google Scholar] [CrossRef] [Green Version]
- Aarnisalo, A.A.; Cheng, J.T.; Ravicz, M.E.; Furlong, C.; Merchant, S.N.; Rosowski, J.J. Motion of the tympanic membrane after cartilage tympanoplasty determined by stroboscopic holography. Hear. Res. 2010, 263, 78–84. [Google Scholar] [CrossRef] [Green Version]
- De Greef, D.; Aernouts, J.; Aerts, J.; Cheng, J.T.; Horwitz, R.; Rosowski, J.J.; Dirckx, J.J. Viscoelastic properties of the human tympanic membrane studied with stroboscopic holography and finite element modeling. Hear. Res. 2014, 312, 69–80. [Google Scholar] [CrossRef]
- Khaleghi, M.; Furlong, C.; Ravicz, M.; Cheng, J.T.; Rosowski, J. Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography. J. Biomed. Opt. 2015, 20, 051028. [Google Scholar] [CrossRef]
- Khaleghi, M.; Guignard, J.; Furlong, C.; Rosowski, J.J. Full-Field Three-Dimensional Characterization of Non-repetitive Motions by Single-Shot Multiplexed Digital Holography. In Experimental and Applied Mechanics, Volume 4; Springer: Cham, Switzerland, 2016; pp. 11–18. [Google Scholar]
- Cheng, J.T.; Aarnisalo, A.A.; Harrington, E.; del Socorro Hernandez-Montes, M.; Furlong, C.; Merchant, S.N.; Rosowski, J.J. Motion of the surface of the human tympanic membrane measured with stroboscopic holography. Hear. Res. 2010, 263, 66–77. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [Green Version]
- Fercher, A.F.; Drexler, W.; Hitzenberger, C.K.; Lasser, T. Optical coherence tomography-principles and applications. Rep. Prog. Phys. 2003, 66, 239. [Google Scholar] [CrossRef]
- Welzel, J. Optical coherence tomography in dermatology: A review. Ski. Res. Technol. Rev. Artic. 2001, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lakshmikantha, H.T.; Ravichandran, N.K.; Jeon, M.; Kim, J.; Park, H.-S. 3-Dimensional characterization of cortical bone microdamage following placement of orthodontic microimplants using Optical Coherence Tomography. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaechi, B.T.; Higham, S.; Podoleanu, A.G.; Rogers, J.A.; Jackson, D.A. Use of optical coherence tomography for assessment of dental caries: Quantitative procedure. J. Oral Rehabil. 2001, 28, 1092–1093. [Google Scholar] [CrossRef] [PubMed]
- Meglinski, I.; Buranachai, C.; Terry, L. Plant photonics: Application of optical coherence tomography to monitor defects and rots in onion. Laser Phys. Lett. 2010, 7, 307. [Google Scholar] [CrossRef]
- Ravichandran, N.K.; Wijesinghe, R.E.; Shirazi, M.F.; Park, K.; Lee, S.-Y.; Jung, H.-Y.; Jeon, M.; Kim, J. In vivo monitoring on growth and spread of gray leaf spot disease in capsicum annuum leaf using spectral domain optical coherence tomography. J. Spectrosc. 2016, 2016, 1093734. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.; Harvey, M. Optical coherence tomography: Age estimation of Calliphora vicina pupae in vivo? Forensic Sci. Int. 2014, 242, 157–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravichandran, N.; Wijesinghe, R.; Lee, S.-Y.; Choi, K.; Jeon, M.; Jung, H.-Y.; Kim, J. Non-destructive analysis of the internal anatomical structures of mosquito specimens using optical coherence tomography. Sensors 2017, 17, 1897. [Google Scholar] [CrossRef] [PubMed]
- Van der Jeught, S.; Dirckx, J.J.; Aerts, J.R.; Bradu, A.; Podoleanu, A.G.; Buytaert, J.A. Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography. J. Assoc. Res. Otolaryngol. 2013, 14, 483–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, C.T.; Jung, W.; Kim, J.; Chaney, E.J.; Novak, M.; Stewart, C.N.; Boppart, S.A. Noninvasive in vivo optical detection of biofilm in the human middle ear. Proc. Natl. Acad. Sci. USA 2012, 109, 9529–9534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, E.W.; Cheng, J.T.; Röösli, C.; Kobler, J.B.; Rosowski, J.J.; Yun, S.H. Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles. Hear. Res. 2013, 304, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zhao, Y.; Srinivas, S.M.; Nelson, J.S.; Prakash, N.; Frostig, R.D. Optical doppler tomography. IEEE J. Sel. Top. Quantum Electron. 1999, 5, 1134–1142. [Google Scholar] [CrossRef]
- Yang, V.X.; Gordon, M.L.; Qi, B.; Pekar, J.; Lo, S.; Seng-Yue, E.; Mok, A.; Wilson, B.C.; Vitkin, I.A. High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance. Opt. Express 2003, 11, 794–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, V.X.; Gordon, M.L.; Mok, A.; Zhao, Y.; Chen, Z.; Cobbold, R.S.; Wilson, B.C.; Vitkin, I.A. Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation. Opt. Commun. 2002, 208, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Izatt, J.A.; Kulkarni, M.D.; Yazdanfar, S.; Barton, J.K.; Welch, A.J. In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Opt. Lett. 1997, 22, 1439–1441. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Milner, T.E.; Srinivas, S.; Wang, X.; Malekafzali, A.; van Gemert, M.J.; Nelson, J.S. Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Opt. Lett. 1997, 22, 1119–1121. [Google Scholar] [CrossRef] [PubMed]
- White, B.R.; Pierce, M.C.; Nassif, N.; Cense, B.; Park, B.H.; Tearney, G.J.; Bouma, B.E.; Chen, T.C.; de Boer, J.F. In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography. Opt. Express 2003, 11, 3490–3497. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.K.; An, L. Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo. Opt. Express 2009, 17, 8926–8940. [Google Scholar] [CrossRef] [Green Version]
- Burkhardt, A.; Kirsten, L.; Bornitz, M.; Zahnert, T.; Koch, E. Investigation of the human tympanic membrane oscillation ex vivo by Doppler optical coherence tomography. J. Biophotonics 2014, 7, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Jeon, D.; Cho, N.H.; Park, K.; Kim, K.; Jeon, M.; Jang, J.H.; Kim, J. In Vivo Vibration Measurement of Middle Ear Structure Using Doppler Optical Coherence Tomography: Preliminary Study. Clin. Exp. Otorhinolaryngol. 2019, 12, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawlowski, M.E.; Shrestha, S.; Park, J.; Applegate, B.E.; Oghalai, J.S.; Tkaczyk, T.S. Miniature, minimally invasive, tunable endoscope for investigation of the middle ear. Biomed. Opt. Express 2015, 6, 2246–2257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirsten, L.; Schindler, M.; Morgenstern, J.; Erkkilä, M.T.; Golde, J.; Walther, J.; Rottmann, P.; Kemper, M.; Bornitz, M.; Neudert, M. Endoscopic optical coherence tomography with wide field-of-view for the morphological and functional assessment of the human tympanic membrane. J. Biomed. Opt. 2018, 24, 031017. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Cheng, J.T.; Ferguson, D.; Maguluri, G.; Chang, E.W.; Clancy, C.; Lee, D.J.; Iftimia, N. Investigation of middle ear anatomy and function with combined video otoscopy-phase sensitive OCT. Biomed. Opt. Express 2016, 7, 238–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramier, A.; Cheng, J.T.; Ravicz, M.E.; Rosowski, J.J.; Yun, S.-H. Mapping the phase and amplitude of ossicular chain motion using sound-synchronous optical coherence vibrography. Biomed. Opt. Express 2018, 9, 5489–5502. [Google Scholar] [CrossRef] [PubMed]
- MacDougall, D.; Farrell, J.; Brown, J.; Bance, M.; Adamson, R. Long-range, wide-field swept-source optical coherence tomography with GPU accelerated digital lock-in Doppler vibrography for real-time, in vivo middle ear diagnostics. Biomed. Opt. Express 2016, 7, 4621–4635. [Google Scholar] [CrossRef]
- Kim, W.; Kim, S.; Huang, S.; Oghalai, J.S.; Applegate, B.E. Picometer scale vibrometry in the human middle ear using a surgical microscope based optical coherence tomography and vibrometry system. Biomed. Opt. Express 2019, 10, 4395–4410. [Google Scholar] [CrossRef]
- Davis, H.; Hirsh, S.; Popelka, G.; Formby, C. Frequency selectivity and thresholds of brief stimuli suitable for electric response audiometry. Audiology 1984, 23, 59–74. [Google Scholar] [CrossRef]
- Wijesinghe, R.E.; Park, K.; Kim, D.-H.; Jeon, M.; Kim, J. In vivo imaging of melanoma-implanted magnetic nanoparticles using contrast-enhanced magneto-motive optical Doppler tomography. J. Biomed. Opt. 2016, 21, 064001. [Google Scholar] [CrossRef] [Green Version]
- Makita, S.; Fabritius, T.; Yasuno, Y. Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography. Opt. Lett. 2008, 33, 836–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, Y.-C.; Jung, W.; Chen, Z. Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography. Opt. Lett. 2007, 32, 1587–1589. [Google Scholar] [CrossRef] [PubMed]
- Zorowka, P.; Schmitt, H.; Gutjahr, P. Evoked otoacoustic emissions and pure tone threshold audiometry in patients receiving cisplatinum therapy. Int. J. Pediatric Otorhinolaryngol. 1993, 25, 73–80. [Google Scholar] [CrossRef]
- Selters, W.A.; Brackmann, D.E. Acoustic tumor detection with brain stem electric response audiometry. Arch. Otolaryngol. 1977, 103, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Ravicz, M.E.; Tao Cheng, J.; Rosowski, J.J. Sound pressure distribution within natural and artificial human ear canals: Forward stimulation. J. Acoust. Soc. Am. 2014, 136, 3132–3146. [Google Scholar] [CrossRef] [Green Version]
- Araujo, M.M.; Massuda, E.T.; Hyppolito, M.A. Anatomical and functional evaluation of tympanoplasty using a transitory natural latex biomembrane implant from the rubber tree Hevea brasiliensis. Acta Cir. Bras. 2012, 27, 566–571. [Google Scholar] [CrossRef] [Green Version]
- Aernouts, J.; Soons, J.A.; Dirckx, J.J. Quantification of tympanic membrane elasticity parameters from in situ point indentation measurements: Validation and preliminary study. Hear. Res. 2010, 263, 177–182. [Google Scholar] [CrossRef]
Scan Range = 5 mm × 5 mm | |||||
---|---|---|---|---|---|
Frequency (kHz) | 2 | 2.2 | 2.8 | 3.1 | 3.2 |
A-line time (μsec) | 500 | 455 | 357 | 323 | 313 |
Total time (sec) | 180 | 163.8 | 128.5 | 116.3 | 112.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seong, D.; Kwon, J.; Jeon, D.; Wijesinghe, R.E.; Lee, J.; Ravichandran, N.K.; Han, S.; Lee, J.; Kim, P.; Jeon, M.; et al. In Situ Characterization of Micro-Vibration in Natural Latex Membrane Resembling Tympanic Membrane Functionally Using Optical Doppler Tomography. Sensors 2020, 20, 64. https://doi.org/10.3390/s20010064
Seong D, Kwon J, Jeon D, Wijesinghe RE, Lee J, Ravichandran NK, Han S, Lee J, Kim P, Jeon M, et al. In Situ Characterization of Micro-Vibration in Natural Latex Membrane Resembling Tympanic Membrane Functionally Using Optical Doppler Tomography. Sensors. 2020; 20(1):64. https://doi.org/10.3390/s20010064
Chicago/Turabian StyleSeong, Daewoon, Jaehwan Kwon, Deokmin Jeon, Ruchire Eranga Wijesinghe, Jaeyul Lee, Naresh Kumar Ravichandran, Sangyeob Han, Junsoo Lee, Pilun Kim, Mansik Jeon, and et al. 2020. "In Situ Characterization of Micro-Vibration in Natural Latex Membrane Resembling Tympanic Membrane Functionally Using Optical Doppler Tomography" Sensors 20, no. 1: 64. https://doi.org/10.3390/s20010064