Comparison of Measurements with Finite-Element Analysis of Silicon-Diaphragm-Based Fiber-Optic Fabry–Perot Temperature Sensors
<p>Schematic diagram of sensor diaphragm.</p> "> Figure 2
<p>Simulation results for (<b>a</b>) thermal stress and (<b>b</b>) thermal expansion of the sensor head.</p> "> Figure 3
<p>Thermal expansion coefficient of silicon.</p> "> Figure 4
<p>Simulation of distribution of electric-field intensity.</p> "> Figure 5
<p>Simulated reflection spectrum of the sensor.</p> "> Figure 6
<p>Simulated reflection spectra for different temperatures.</p> "> Figure 7
<p>Simulation of temperature sensitivity of sensor: Wavelength shift versus temperature.</p> "> Figure 8
<p>Simulation of temperature sensitivity of sensor for different intracavity pressures.</p> "> Figure 9
<p>Experimental setup.</p> "> Figure 10
<p>Optical-microscope image of sensor.</p> "> Figure 11
<p>Reflection spectra at different temperatures.</p> "> Figure 12
<p>Wavelength shift versus temperature for different intracavity pressures: (<b>a</b>) 0.01 MPa; (<b>b</b>) 0.03 MPa; (<b>c</b>) 0.04 MPa; (<b>d</b>) 0.05 MPa.</p> "> Figure 12 Cont.
<p>Wavelength shift versus temperature for different intracavity pressures: (<b>a</b>) 0.01 MPa; (<b>b</b>) 0.03 MPa; (<b>c</b>) 0.04 MPa; (<b>d</b>) 0.05 MPa.</p> ">
Abstract
:1. Introduction
2. Sensor Fabrication
3. Theoretical Analysis
4. Experimental Setup
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, B.H.; Kim, Y.H.; Park, K.S.; Eom, J.B.; Kim, M.J.; Rho, B.S.; Choi, H.Y. Interferometric Fiber Optic Sensors. Sensors 2012, 12, 2467–2486. [Google Scholar] [CrossRef] [Green Version]
- Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. Mater. Devices Syst. 2003, 9, 57–79. [Google Scholar] [CrossRef]
- Kersey, A.D.; Davis, M.A.; Patrick, H.J.; LeBlanc, M.; Koo, K.P.; Askins, C.G.; Putnam, M.A.; Friebele, E.J. Fiber grating sensors. J. Lightwave Technol. 1997, 15, 1442–1463. [Google Scholar] [CrossRef] [Green Version]
- Patrick, H.J.; Williams, G.M.; Kersey, A.D.; Pedrazzani, J.R.; Vengsarkar, A.M. Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination. IEEE Photonics Technol. Lett. 1996, 8, 1223–1225. [Google Scholar] [CrossRef]
- Bao, X.; Chen, L. Recent Progress in Distributed Fiber Optic Sensors. Sensors 2012, 12, 8601–8639. [Google Scholar] [CrossRef] [Green Version]
- Jorgenson, R.C.; Yee, S.S. A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators B (Chem.) 1993, 12, 213–220. [Google Scholar] [CrossRef]
- Jensen, J.B.; Pedersen, L.H.; Hoiby, P.E.; Nielsen, L.B.; Hansen, T.P.; Folkenberg, J.R.; Riishede, J.; Noordegraaf, D.; Nielsen, K.; Carlsen, A.; et al. Photonic Crystal Fiber Based Evanescent-Wave Sensor for Detection of Biomolecules in Aqueous Solutions. Opt. Lett. 2004, 29, 1974–1976. [Google Scholar] [CrossRef]
- Gang, T.; Hu, M.; Rong, Q.; Qiao, X.; Liang, L.; Liu, N.; Tong, R.; Liu, X.; Bian, C. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models. Sensors 2016, 16, 2125. [Google Scholar] [CrossRef]
- Dakin, J.P.; Ecke, W.; Schroeder, K.; Reuter, M. Optical fiber sensors using hollow glass spheres and CCD spectrometer interrogator. Opt. Lasers Eng. 2009, 47, 1034–1038. [Google Scholar] [CrossRef]
- Xu, B.; Liu, Y.; Wang, D.; Jia, D.; Jiang, C. Optical Fiber Fabry–Pérot Interferometer Based on an Air Cavity for Gas Pressure Sensing. IEEE Photonics J. 2017, 9, 1–9. [Google Scholar] [CrossRef]
- Liang, H.; Jia, P.; Liu, J.; Fang, G.; Li, Z.; Hong, Y.; Liang, T.; Xiong, J. Diaphragm-Free Fiber-Optic Fabry–Perot Interferometric Gas Pressure Sensor for High Temperature Application. Sensors 2018, 18, 1011. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.H.; Lin, C.J. A novel structure for the intrinsic Fabry–Perot fiber-optic temperature sensor. J. Lightwave Technol. 2002, 19, 682–686. [Google Scholar] [CrossRef]
- Lv, R.; Zhao, Y.; Wang, Q. An optical fiber temperature sensor based on an ethanol filled fabry-perot cavity. Instrum. Sci. Technol. 2014, 42, 402–411. [Google Scholar] [CrossRef]
- Tao, Z.; Ke, T.; Rao, Y.; Duan, D.; Xu, M. Miniature all-fiber Fabry–Perot interferometric high temperature sensor based on a thin film. Opt. Precis. Eng. 2010, 5, 007. [Google Scholar]
- Ma, J.; Ju, J.; Jin, L.; Jin, W. A Compact Fiber-Tip Micro-Cavity Sensor for High-Pressure Measurement. IEEE Photonics Technol. Lett. 2011, 24, 1561–1563. [Google Scholar] [CrossRef]
- Wang, W.; Wu, N.; Tian, Y.; Niezrecki, C.; Wang, X. Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm. Opt. Express 2010, 18, 9006–9014. [Google Scholar] [CrossRef]
- Wolthuis, R.A.; Mitchell, G.L.; Saaski, E.; Hartl, J.C.; Afromowitz, M.A. Development of medical pressure and temperature sensors employing optical spectrum modulation. IEEE Trans. Biomed. Eng. 1991, 38, 974–981. [Google Scholar] [CrossRef]
- Yin, J.; Liu, T.; Jiang, J.; Liu, K.; Wang, S.; Qin, Z.; Zou, S. Batch-Producible Fiber-Optic Fabry–Pérot Sensor for Simultaneous Pressure and Temperature Sensing. IEEE Photonics Technol. Lett. 2014, 26, 2070–2073. [Google Scholar]
- Li, M.; Wang, M.; Li, H. Optical MEMS pressure sensor based on Fabry–Perot interferometry. Opt. Express 2006, 14, 1497. [Google Scholar] [CrossRef]
- Xu, F.; Ren, D.; Shi, X.; Li, C.; Lu, W.; Lu, L.; Lu, L.; Yu, B. High-sensitivity fabry-Perot interferometric pressure sensor based on nanothick silver diaphragm. Opt. Lett. 2012, 37, 133–135. [Google Scholar] [CrossRef]
- Guo, F.; Fink, T.; Han, M.; Koester, L.; Turner, J.; Huang, J. High-sensitivity, high-frequency extrinsic Fabry–Perot interferometric fiber-tip sensor based on a thin silver diaphragm. Opt. Lett. 2012, 37, 1505–1507. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Jin, W.; Ho, H.L.; Dai, J.Y. High-sensitivity fiber-tip pressure sensor with graphene diaphragm. Opt. Lett. 2012, 37, 2493–2495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Feng, Z.; Qiao, X.; Yang, H.; Wang, R.; Su, D.; Wang, Y.; Bao, W.; Li, J.; Shao, Z.; et al. Ultrahigh Sensitive Temperature Sensor Based on Fabry–Pérot Interference Assisted by a Graphene Diaphragm. IEEE Sens. J. 2014, 15, 505–509. [Google Scholar] [CrossRef]
- Li, C.; Lan, T.; Yu, X.; Bo, N.; Dong, J.; Fan, S. Room-Temperature Pressure-Induced Optically-Actuated Fabry–Perot Nanomechanical Resonator with Multilayer Graphene Diaphragm in Air. Nanomaterials 2017, 7, 366. [Google Scholar] [CrossRef]
- Dziuban, J.A. Bonding in Microsystem Technology; Springer: New York, NY, USA, 2007; pp. 170–179. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Xie, X.; Xu, X.; Chen, X.; Xiao, L. Comparison of Measurements with Finite-Element Analysis of Silicon-Diaphragm-Based Fiber-Optic Fabry–Perot Temperature Sensors. Sensors 2019, 19, 4780. https://doi.org/10.3390/s19214780
Wang R, Xie X, Xu X, Chen X, Xiao L. Comparison of Measurements with Finite-Element Analysis of Silicon-Diaphragm-Based Fiber-Optic Fabry–Perot Temperature Sensors. Sensors. 2019; 19(21):4780. https://doi.org/10.3390/s19214780
Chicago/Turabian StyleWang, Rongkun, Xuejian Xie, Xiangang Xu, Xiufang Chen, and Longfei Xiao. 2019. "Comparison of Measurements with Finite-Element Analysis of Silicon-Diaphragm-Based Fiber-Optic Fabry–Perot Temperature Sensors" Sensors 19, no. 21: 4780. https://doi.org/10.3390/s19214780