Combining Electromagnetic Spectroscopy and Ground-Penetrating Radar for the Detection of Anti-Personnel Landmines
<p>Metallic components present in minimum-metal anti-personnel mines. Adapted from [<a href="#B9-sensors-19-03390" class="html-bibr">9</a>].</p> "> Figure 2
<p>Typical complex spectral responses for: (<b>a</b>) increasing object size; (<b>b</b>) increasing object permeability <math display="inline"><semantics> <mi>μ</mi> </semantics></math>; and (<b>c</b>) increasing object conductivity <math display="inline"><semantics> <mi>σ</mi> </semantics></math> © 2016 IEEE [<a href="#B27-sensors-19-03390" class="html-bibr">27</a>].</p> "> Figure 3
<p>MIS sensor coil geometry including winding directions.</p> "> Figure 4
<p>Transmit signal characteristics for MIS system.</p> "> Figure 5
<p>The geometry of one half of the loaded bowtie antennas.</p> "> Figure 6
<p>Antenna impedance of the loaded bowtie antenna.</p> "> Figure 7
<p>(<b>a</b>) The location of GPR antennas within the MIS sensor head; and (<b>b</b>) photograph of the combined sensor head.</p> "> Figure 8
<p>Schematic of combined MIS/GPR system.</p> "> Figure 9
<p>Test objects used: (<b>a</b>) PMA-2 surrogate; (<b>b</b>) type A72 surrogate—lid removed with metallic component (inset) on 1 cm grid; (<b>c</b>) PMA-3 surrogate; and (<b>d</b>) 50 Euro cent coin.</p> "> Figure 10
<p>Description of object depth measurements and orientation with metallic components highlighted.</p> "> Figure 11
<p>Three-dimensional scanner used for testing.</p> "> Figure 12
<p>Locations for the objects buried in the sand.</p> "> Figure 13
<p>MIS test results—imaginary component.</p> "> Figure 14
<p>GPR testing results.</p> "> Figure 15
<p>Decision surfaces showing how targets are classified based on the confidence from the two sensors, based on varying thresholds.</p> "> Figure 16
<p>Detections based on the three different threshold calculations.</p> "> Figure 17
<p>MIS detection threshold function as function of object depth (as reported by GPR) and GPR confidence.</p> "> Figure 18
<p>Multi-modal dataset: (<b>a</b>) GPR spectral analysis for PMA-2; (<b>b</b>) Integrated C-Scan of GPR data; (<b>c</b>) GPR spectral analysis of A72; (<b>d</b>) MIS analysis of coin; (<b>e</b>) MIS spatial analysis of test area at 14.3 kHz; (<b>f</b>) MIS analysis of mine targets; and (<b>g</b>) test object locations with GPR perturbations overlaid.</p> ">
Abstract
:1. Introduction
2. System Overview
2.1. Spectroscopic Metal Detection
2.2. Ground-Penetrating Radar
2.3. Dual Modality System
3. Experimental Methodology
3.1. MIS Methodology
3.2. GPR Methodology
3.3. Test Objects
3.4. Experimental Setup
4. Results and Discussion
4.1. Individual Sensors
4.2. Sensor Fusion
4.3. Multi-Modal Data Visualisation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- International Campaign to Ban Landmines. Landmine Monitor 2018; Cluster Munition Coalition (ICBL-CMC): Geneva, Switzerland, 2018. [Google Scholar]
- United Nations. Guide for the Management of Demining Operations; United Nations Mine Action Service: New York, NY, USA, 2013; pp. 1–23. [Google Scholar]
- Geneva International Centre for Humanitarian Demining. Manual Demining—GICHD. Available online: https://www.gichd.org/resources/other-resources/technology-subject-archives/detail/technology/manual-demining (accessed on 12 April 2014).
- International Mine Action Standard. Guide for the use of mine detection dogs. In IMAS 09.40; United Nations Mine Action Service (UNMAS): New York, NY, USA, 2003. [Google Scholar]
- Walsh, N.E.; Walsh, W.S. Rehabilitation of landmine victims—The ultimate challenge. Bull. World Health Organ. 2003, 81, 665–670. [Google Scholar] [PubMed]
- International Committee of the Red Cross. Anti-Personnel Landmines: Friend or Foe: A Study of the Military Use and Effectiveness of Anti-Personnel Mines; International Committee of the Red Cross: Geneva, Switzerland, 1996. [Google Scholar]
- Croll, M. The History of Landmines; Pen and Sword: Barnsley, UK, 1998. [Google Scholar]
- King, C. Janes Mines and Mine Clearance 2011–2012, 16th ed.; IHS Jane’s: Coulsdon, UK, 2011; pp. 100–101. [Google Scholar]
- Center for International Stabilization and Recovery. Collaborative ORDnance Data Repository (CORD). Available online: http://ordata.info (accessed on 1 May 2015).
- Schubert, H.; Kuznetsov, A. Detection of Explosives and Landmines (Nato Science Series II); Springer: Berlin, Germany, 2002. [Google Scholar]
- UN Secretary General. Assistance in Mine Clearance: Report of the Secretary-General A/49/357; Technical Report; United Nations: New York, NY, USA, 1994. [Google Scholar]
- Daniels, D.J. Unexploded Ordnance Detection and Mitigation; NATO Science for Peace and Security Series B: Physics and Biophysics; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Daniels, D.; Braustein, J.; Nevard, M. Using MINEHOUND in Cambodia and Afghanistan. J. Erw Mine Action 2014, 18, 1–5. [Google Scholar]
- The Halo Trust. HALO Utilises Dual-sensor Detector|The HALO Trust. Available online: https://www.halotrust.org/media-centre/news/halo-utilises-dual-sensor-detector/ (accessed on 21 April 2019).
- Sato, M.; Kikuta, K.; Chernyak, I. Dual Sensor “ALIS“ for Humanitarian Demining. In Proceedings of the 2018 17th International Conference on Ground Penetrating Radar (GPR), Rapperswil, Switzerland, 18–21 June 2018; pp. 1–4. [Google Scholar] [CrossRef]
- MacDonald, J.; Lockwood, J.R. Alternatives for Landmine Detection; Technical Report Paper I; RAND Corporation: Santa Monica, CA, USA 2003. [Google Scholar]
- Doheny, R.C.; Burke, S.; Cresci, R.; Ngan, P.; Walls, R.; Chernoff, J. Handheld Standoff Mine Detection System (HSTAMIDS) field evaluation in Namibia. In Detection and Remediation Technologies for Mines and Minelike Targets, Proceedings of the Defense and Security Symposium, Orlando, FL, USA, 18 May 2006; SPIE: Bellingham, WA, USA, 2006. [Google Scholar]
- Vallon GmBH. Vallon - Mine Detection—MINEHOUND VMR3. Available online: http://www.vallon.de (accessed on 14 July 2017).
- Ishikawa, J.; Kiyota, M.; Pavković, N.; Furuta, K. Test and Evaluation of Japanese GPR-EMI Dual Sensor Systems at Benkovac Test Site in Croatia. J. Mine Action 2006, 10.1, 93–102. [Google Scholar] [CrossRef]
- Takahashi, K.; Gaal, M.; Gulle, D. Data Analysis and Performance Evaluation of Japanese Dual-sensor Systems Tested in Croatia. J. Erw Mine Action 2009, 13, 66–70. [Google Scholar]
- Knox, M.; Rundel, C.; Collins, L. Sensor Fusion for Buried Explosive Threat Detection for Handheld Data. In Proceedings of the Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXII, Anaheim, CA, USA, 3 May 2017; Volume 10182. [Google Scholar]
- Bruschini, C.; Sahli, H. Phase-angle-based EMI object discrimination and analysis of data from a commercial differential two-frequency system. In Proceedings of the Detection and Remediation Technologies for Mines and Minelike Targets V, Orlando, FL, USA, 22 August 2000; Volume 4038. [Google Scholar]
- Tantum, S.L.; Collins, L.M. A comparison of algorithms for subsurface target detection and identification using time-domain electromagnetic induction data. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1299–1306. [Google Scholar] [CrossRef]
- Benavides, A.I.; Everett, M.E.; Pierce, C. Unexploded ordnance discrimination using time-domain electromagnetic induction and self-organizing maps. Stoch. Environ. Res. Risk Assess. 2009, 23, 169–179. [Google Scholar] [CrossRef]
- Nelson, C.V.; Cooperman, C.B.; Schneider, W.; Wenstrand, D.S.; Smith, D.G. Wide bandwidth time-domain electromagnetic sensor for metal target classification. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1129–1138. [Google Scholar] [CrossRef]
- Ledger, P.D.; Lionheart, W.R.B. The spectral properties of the magnetic polarizability tensor for metallic object characterisation. arXiv 2019, arXiv:1906.00382. [Google Scholar]
- Abdel-Rehim, O.A.; Davidson, J.L.; Marsh, L.A.; O’Toole, M.D.; Peyton, A.J. Magnetic Polarizability Tensor Spectroscopy for Low Metal Anti-Personnel Mine Surrogates. IEEE Sens. J. 2016, 16, 3775–3783. [Google Scholar] [CrossRef]
- Marsh, L.A.; Davidson, J.L.; O’Toole; Peyton, A.J.; Ambrus, D.; Vasic, D.; Bilas, V. Spectroscopic identification of anti-personnel mine surrogates from planar sensor measurements. IEEE Sens. J. 2016, 2016, 1–3. [Google Scholar] [CrossRef]
- Ledger, P.D.; Lionheart, W.R.B. An Explicit Formula for the Magnetic Polarizability Tensor for Object Characterization. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3520–3533. [Google Scholar] [CrossRef]
- Won, I.J.; Keiswetter, D.A.; Hanson, D.R.; Novikova, E.; Hall, T.M. GEM-3: A Monostatic Broadband Electromagnetic Induction Sensor. J. Environ. Eng. Geophys. 1997, 2, 53–64. [Google Scholar] [CrossRef]
- Scott, W.R. Broadband Array of Electromagnetic Induction Sensors for Detecting Buried Landmines. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7 July 2008; Volume 2, pp. II–375–II–378. [Google Scholar] [CrossRef]
- Hayes, C.E.; Waymond, R.; Scott, J.H.M., Jr. Exploiting measurement subspaces for wideband electromagnetic induction processing. In Proceedings of the Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXIII, Orlando, FL, USA, 30 April 2018; Volume 10628. [Google Scholar]
- Alvey, B.; Dominic, K.C.; Ho, A.Z. Fourier features for explosive hazard detection using a wideband electromagnetic induction sensor. In Proceedings of the Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXII, Anaheim, CA, USA, 3 May 2017; Volume 10182. [Google Scholar]
- Daniels, D.J. A review of GPR for landmine detection. Sens. Imaging Int. J. 2006, 7, 90–123. [Google Scholar] [CrossRef]
- Van Verre, W.; Podd, F.J.; Tan, Y.M.; Gao, X.; Peyton, A.J. A Comparison of Solid and Loaded Bowtie Antennas in GPR for the Detection of Buried Landmines. In Proceedings of the 17th International Conference on Ground Penetrating Radar (GPR), Rapperswil, Switzerland, 18 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Anritsu Group. ShockLine Compact USB VNA MS46122A|Anritsu Europe. Available online: https://www.anritsu.com/en-GB/test-measurement/products/ms46122a/ (accessed on 19 April 2019).
- Vinayagamoorthy, K.; Coetzee, J.; Jayalath, D. Microstrip to Parallel Strip Balun as Spiral Antenna Feed. In Proceedings of the 2012 IEEE 75th Vehicular Technology Conference (VTC Spring), Yokohama, Japan, 6–9 May 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Lestari, A.; Suksmono, A.B.; Kurniawan, A.; Bharata, E.; Yarovoy, A.G.; Ligthart, L.P. A Facility For UWB Antenna Measurements In Time Domain. In Proceedings of the IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, Singapore, 7–9 March 2005; pp. 109–122. [Google Scholar] [CrossRef]
- Cross, G.; Das, Y. Soil Electromagnetic Properties and Metal Detector Performance— Theory and Measurement - CR 2009-062; Terrascan Geophysics: Vancouver, BC, Canada, 2008. [Google Scholar]
- Stolt, R.H. Migration By Fourier Transform. Geophysics 1978, 43, 23. [Google Scholar] [CrossRef]
- Garcia, D.; Tarnec, L.L.; Muth, S.; Montagnon, E.; Porée, J.; Cloutier, G. Stolt’ s f - k Migration for Plane Wave Ultrasound Imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2013, 60, 1853–1867. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, C.; Demirci, E.; Yiǧit, E.; Yilmaz, B. A Review on Migration Methods in b-Scan Ground Penetrating Radar Imaging. Math. Probl. Eng. 2014, 2014, 280738. [Google Scholar] [CrossRef]
- Jurkuch, B.J.; Tim, L. National Technical Standards and Guidelines—South Sudan, 1st ed.; United Nations Mine Action Service: New York, NY, USA, 2015; Volume 3. [Google Scholar]
- Geneva International Centre for Humanitarian Demining. A Study of Manual Mine Clearance; Geneva International Centre for Humanitarian Deminig: Geneva, Switzerland, 2005. [Google Scholar]
- Ahrens, J.; Geveci, B.; Law, C. ParaView: An End-User Tool for Large-Data Visualization. In Visualization Handbook; Hansen, C.D., Johnson, C.R., Eds.; Elsevier: Burlington, NJ, USA, 2005; pp. 717–731. [Google Scholar]
- Ho, K.C.; Carin, L.; Gader, P.D.; Wilson, J.N. An Investigation of Using the Spectral Characteristics from Ground Penetrating Radar for Landmine/Clutter Discrimination. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1177–1191. [Google Scholar] [CrossRef]
Harmonic | Frequency | Normalised Magnitude | RMS Magnitude |
---|---|---|---|
Index | (Arbitrary Units) | (A·Turns) | |
4 | kHz | 0.50 | 2.07 |
7 | kHz | 1.00 | 2.34 |
12 | kHz | 0.77 | 1.06 |
15 | kHz | 0.69 | 0.78 |
19 | kHz | 0.60 | 0.53 |
24 | kHz | 0.54 | 0.37 |
Number of Steps | 220 |
---|---|
Frequency step size | 27 MHz |
Start frequency | 270 MHz |
Stop frequency | 6183 MHz |
I.F. bandwidth | 1 kHz |
TX Power | −3 dBm |
Object Name | Location | Depth | Lift-Off | MIS Depth |
---|---|---|---|---|
(x,y) (m) | (cm) | (cm) | (cm) | |
50 cent coin | 8 | 2 | 10 | |
PMA-2 surrogate | 2 | 2 | 7 | |
A72 surrogate | 2 | 10 | ||
PMA-3 surrogate | 16 | 2 |
Modality | Object | Known (x, y ,z) | Estimated (x, y, z) |
---|---|---|---|
Name | (m) | (m) | |
MIS | Coin | ||
MIS | PMA-2 | ||
MIS | A72 | ||
MIS | PMA-3 | ||
GPR | Coin | ||
GPR | PMA-2 | ||
GPR | A72 | ||
GPR | PMA-3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
A. Marsh, L.; van Verre, W.; L. Davidson, J.; Gao, X.; J. W. Podd, F.; J. Daniels, D.; J. Peyton, A. Combining Electromagnetic Spectroscopy and Ground-Penetrating Radar for the Detection of Anti-Personnel Landmines. Sensors 2019, 19, 3390. https://doi.org/10.3390/s19153390
A. Marsh L, van Verre W, L. Davidson J, Gao X, J. W. Podd F, J. Daniels D, J. Peyton A. Combining Electromagnetic Spectroscopy and Ground-Penetrating Radar for the Detection of Anti-Personnel Landmines. Sensors. 2019; 19(15):3390. https://doi.org/10.3390/s19153390
Chicago/Turabian StyleA. Marsh, Liam, Wouter van Verre, John L. Davidson, Xianyang Gao, Frank J. W. Podd, David J. Daniels, and Anthony J. Peyton. 2019. "Combining Electromagnetic Spectroscopy and Ground-Penetrating Radar for the Detection of Anti-Personnel Landmines" Sensors 19, no. 15: 3390. https://doi.org/10.3390/s19153390