Citrus Pests and Diseases Recognition Model Using Weakly Dense Connected Convolution Network
<p>Pictures of brown marmorated stink bug taken from different angles.</p> "> Figure 2
<p>Examples of small size citrus pests: (<b>a</b>), (<b>c</b>), and (<b>e</b>) are the images of their individuals, (<b>b</b>), (<b>d</b>), and (<b>f</b>) are those of their groups.</p> "> Figure 3
<p>Representative images of citrus diseases. (<b>a</b>) citrus anthracnose, (<b>b</b>) citrus canker, (<b>c</b>) citrus melanose, (<b>d</b>) citrus scab, (<b>e</b>) sooty mold, (<b>f</b>) leaf miner, and (<b>g</b>) pest holes.</p> "> Figure 4
<p>Comparison between different data augmentation methods. (<b>a</b>) Original image, (<b>b</b>), (<b>c</b>), and (<b>d</b>) images generated from proposed algorithm, (<b>e</b>), (<b>f</b>), and (<b>g</b>) pictures produced by a single rotation operation.</p> "> Figure 5
<p>Feature refinement. (<b>a</b>) Squeeze-and-excitation block, (<b>b</b>) the proposed method.</p> "> Figure 6
<p>Building blocks of the Weakly DenseNet. (<b>a</b>) initial building block, (<b>b</b>) and (<b>c</b>) intermediate building blocks, (<b>d</b>) final classification building block.</p> "> Figure 7
<p>Building block of DenseNet.</p> "> Figure 8
<p>Training plot of each model. (<b>a</b>) MobileNet-v1, (<b>b</b>) MobileNet-v2, (<b>c</b>) ShuffleNet-v1, (<b>d</b>) ShuffleNet-v2, (<b>e</b>) NIN-16, (<b>f</b>) SENet-16, (<b>g</b>) VGG-16, (<b>h</b>) WeaklyDenseNet-16.</p> "> Figure 9
<p>Comparison of the test accuracy.</p> "> Figure 10
<p>Visualization of features. (<b>a</b>) and (<b>e</b>) input images, (<b>b</b>) and (<b>f</b>) output features of the intermediate building block 1, (<b>c</b>) and (<b>g</b>) sampled features of the intermediate building block 2, (<b>d</b>) and (<b>h</b>) examples of the feature maps in the intermediate building block 3. Brighter color in images corresponds to higher value.</p> "> Figure 10 Cont.
<p>Visualization of features. (<b>a</b>) and (<b>e</b>) input images, (<b>b</b>) and (<b>f</b>) output features of the intermediate building block 1, (<b>c</b>) and (<b>g</b>) sampled features of the intermediate building block 2, (<b>d</b>) and (<b>h</b>) examples of the feature maps in the intermediate building block 3. Brighter color in images corresponds to higher value.</p> "> Figure A1
<p>The confusion matrix for the test set. (<b>a</b>) test result of each class, (<b>b</b>) prediction for pest and disease label.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Dataset
3.1. Image Collection of Citrus Pests
3.2. Image Collection of Citrus Diseases
3.3. Data Augmentation
4. Weakly DenseNet Architecture
4.1. The 1 × 1 Convolution for Feature Refinement
4.2. Feature Reuse
4.3. Network Architecture
5. Experiments and Results
5.1. Training
Algorithm 1. Learning Rate Schedule |
Input: Patience P, decay , validation loss L Output: Learning rate 1: Initialize L = L0, 2: i ← 0 3: while i < P do 4: if L Li then 5: i = i + 1 6: else 7: L = Li 8: i = i + 1 9: end if 10: end while 11: if L = L0 then 12: 13: end if |
5.2. Test
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Xiang, S.; Hu, Y.; Coppola, G.; Zhang, D.; Sun, W. PD2SE-Net: Computer-assisted plant disease diagnosis and severity estimation network. Comput. Electron. Agric. 2019, 157, 518–529. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, Y.; Chen, Y.; Wu, Y.; Yue, Y. Pest identification via deep residual learning in complex background. Comput. Electron. Agric. 2017, 141, 351–356. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, H.; Li, J.; Jian, F.; Jayas, D.S. Detection of stored-grain insects using deep learning. Comput. Electron. Agric. 2018, 145, 319–325. [Google Scholar] [CrossRef]
- Ren, S.Q.; He, K.M.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. arXiv 2015, arXiv:1512.00567. [Google Scholar]
- Jeong, J.; Park, H.; Kwak, N. Enhancement of SSD by concatenating feature maps for object detection. arXiv 2017, arXiv:1705.09587. [Google Scholar] [Green Version]
- Zhuang, X.; Zhang, T. Detection of sick broilers by digital image processing and deep learning. Biosyst. Eng. 2019, 179, 106–116. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.F. ImageNet: A large-scale hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June 2009. [Google Scholar]
- Reyes, A.K.; Caicedo, J.C.; Camargo, J.E. Fine—Tuning Deep Convolutional Networks for Plant Recognition. In Proceedings of the CLEF (Working Notes), Toulouse, France, 8–11 September 2015. [Google Scholar]
- Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning Filters for Efficient ConvNets. arXiv 2016, arXiv:1608.08710v3. [Google Scholar]
- Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning Convolutional Neural Networks for Resource Efficient Inference. arXiv 2016, arXiv:1611.06440v2. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. arXiv 2017, arXiv:1709.01507. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. arXiv 2018, arXiv:1807.06521. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Huang, G.; Sun, Y.; Liu, Z.; Sedra, D.; Weinberger, K. Deep Networks with Stochastic Depth. arXiv 2016, arXiv:1603.09382v3. [Google Scholar]
- Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400v3. [Google Scholar]
- Srivastava, R.K.; Greff, K.; Schmidhuber, J. Highway Networks. arXiv 2015, arXiv:1505.00387. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. arXiv 2016, arXiv:1608.06993v5. [Google Scholar]
- Boniecki, P.; Koszela, K.; Piekarska Boniecki, H.; Weres, M.; Zaborowcz, M.; Kujawa, A.; Majewski, A.; Raba, B. Neural identification of selected apple pests. Comput. Electron. Agric. 2015, 110, 9–16. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, Z.; Zhang, L.; Dong, W.; Rao, Y. SLIC_SVM based leaf diseases saliency map extraction of tea plant. Comput. Electron. Agric. 2019, 157, 102–109. [Google Scholar] [CrossRef]
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Zagoruyko, S.; Komodakis, N. Wide residual networks. In Proceedings of the British Machine Vision Conference (BMVC), York, UK, 19–22 September 2016. [Google Scholar]
- Lee, C.Y.; Xie, S.; Gallagher, P.; Zhang, Z.; Tu, Z. Deeply-supervised nets. In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics, San Diego, CA, USA, 9–12 May 2015. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 22–25 July 2017. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:704.04861. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv 2018, arXiv:1801.04381v4. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. arXiv 2017, arXiv:1707.01083. [Google Scholar]
- Ma, N.; Zhang, X.; Zheng, H.; Sun, J. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. arXiv 2018, arXiv:1807.11164. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML), Haifa, Israel, 21–24 June 2010. [Google Scholar]
- Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. arXiv 2016, arXiv:1611.05431. [Google Scholar]
- Das, S.; Datta, S.; Chaudhuri, B.B. Handling data irregularities in classification: Foundations, trends, and future challenges. Pattern Recognit. 2018, 81, 674–693. [Google Scholar] [CrossRef]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In Proceedings of the 28th International Conference on Neural Information Processing Systems (NeurIPS), Montreal, PQ, Canada, 8–13 December 2014. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Sutskever, I.; Martens, J.; Dahl, G.E.; Hinton, G.E. On the importance of initialization and momentum in deep learning. In Proceedings of the 30th International Conference on Machine Learning (ICML), Atlanta, GA, USA, 16–21 June 2013. [Google Scholar]
- Masters, D.; Luschi, C. Revisiting Small Batch Training for Deep Neural Networks. arXiv 2018, arXiv:1804.07612. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In Proceedings of the 2015 International Conference on Computer Vision (ICCV), Santiago, Chile, 11–18 December 2015. [Google Scholar]
- Zeiler, M.; Fergus, R. Visualizing and Understanding Convolutional Networks. arXiv 2013, arXiv:1311.2901. [Google Scholar]
Class ID | Common Name | Scientific Name | Number of Samples |
---|---|---|---|
Citrus Pests | |||
8 | Mediterranean fruit fly | Ceratitis capitata | 558 |
0 | Asian citrus psyllid | Diaphorina citri Kuwayama | 359 |
5 | Citrus longicorn beetle | Anoplophora chinensis | 597 |
7 | Brown marmorated stink bug | Halyomorpha halys | 606 |
3 | Southern green stink bug | Nezara viridula | 488 |
4 | Fruit sucking moth | Othreis fullonica | 600 |
1 | Citrus swallowtail | Papilio demodocus | 600 |
15 | Citrus flatid planthopper | Metcalfa pruinosa (Say) | 555 |
9 | Citrus mealybug | Planococcus citri | 495 |
13 | Aphids | Toxoptera citricida | 514 |
11 | Citrus soft scale | Hemiptera: Coccidae | 497 |
12 | False codling moth | Thaumatotibia leucotreta | 511 |
14 | Root weevil | Diaprepes abbreviatus, Pachnaeus opalus | 378 |
2 | Forktailed bush katydid | Scudderia furcata | 600 |
10 | Cicada | Cicadoidea | 508 |
6 | Garden snail | Cornu aspersum | 618 |
16 | Glassy-winged sharpshooter | Homalodisca vitripennis | 567 |
Total | 9051 | ||
Citrus Diseases | |||
17 | Anthracnose | Colletotrichum gloeosporioides | 467 |
18 | Canker | Xanthomonas axonopodis | 598 |
20 | Melanose | Diaporthe citri | 532 |
21 | Scab | Elsinoë fawcettii | 503 |
19 | Leaf miner | Liriomyza brassicae | 427 |
22 | Sooty mold | Capnodium spp | 568 |
23 | Pest hole | 415 | |
Total | 3510 |
Operation | Value |
---|---|
Rotation | [, ] |
Width shift | [0, 0.2] |
Height shift | [0, 0.2] |
Shear | [0, 0.2] |
Zoom | [0.8, 1.2] |
Horizontal flip | - |
Block | Output Size |
---|---|
Initial Block (a) | 56 56 32 |
Intermediate Block (b) | 56 56 96 |
Intermediate Block (c) | 28 28 192 |
Intermediate Block (b) | 28 28 384 |
Intermediate Block (c) | 14 14 768 |
1 1 conv, stride 1 | 14 14 512 |
1 1 conv, stride 1 | 14 14 512 |
2 2 max pool, stride 2 | 7 7 512 |
Classification Block (d) | 1 1 24 |
Model Name | Training Accuracy | Validation Accuracy | Model Size (MB) | Training Time (ms)/Batch Size |
---|---|---|---|---|
MobileNet-v1 | 99.23 | 85.45 | 25 | 152 |
MobileNet-v2 | 99.28 | 87.97 | 33.9 | 198 |
ShuffleNet-v1 | 99.13 | 83.58 | 28.8 | 145 |
ShuffleNet-v2 | 98.72 | 83.58 | 42 | 144 |
VGG-16 | 99.82 | 93 | 120.2 | 303 |
SENet-16 | 99.10 | 88.71 | 19.5 | 138 |
NIN-16 | 99.63 | 91.84 | 19.6 | 137 |
WeaklyDenseNet-16 | 99.83 | 93.42 | 30.5 | 138 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, S.; Lee, M.; Lee, K.-k. Citrus Pests and Diseases Recognition Model Using Weakly Dense Connected Convolution Network. Sensors 2019, 19, 3195. https://doi.org/10.3390/s19143195
Xing S, Lee M, Lee K-k. Citrus Pests and Diseases Recognition Model Using Weakly Dense Connected Convolution Network. Sensors. 2019; 19(14):3195. https://doi.org/10.3390/s19143195
Chicago/Turabian StyleXing, Shuli, Marely Lee, and Keun-kwang Lee. 2019. "Citrus Pests and Diseases Recognition Model Using Weakly Dense Connected Convolution Network" Sensors 19, no. 14: 3195. https://doi.org/10.3390/s19143195