Extraction Method of Crack Signal for Inspection of Complicated Steel Structures Using A Dual-Channel Magnetic Sensor †
<p>(<b>a</b>) The dual-channel sensor probe; (<b>b</b>) diagram of the measurement system.</p> "> Figure 2
<p>(<b>a</b>) Photo of U-shaped rib sample with different-length slits; (<b>b</b>) schematic of scanning path.</p> "> Figure 3
<p>Simulation model for estimating the fundamental magnetic response with different liftoff: (<b>a</b>) with 0.0 mm liftoff; (<b>b</b>) with 1.0 mm liftoff.</p> "> Figure 4
<p>Simulation result of the eddy current density on the surface of the flat plate with different liftoff: (<b>a</b>) with 0.0 mm liftoff; (<b>b</b>) with 1.0 mm liftoff.</p> "> Figure 5
<p>(<b>a</b>) Wire frame of the simulation model and cutting line of P to P’; (<b>b</b>) cross-sectional view of the cutting line; (<b>c</b>) simulation result of magnetic vector inside the induction coil with 0.0 mm liftoff; (<b>d</b>) simulation result of magnetic vector inside the induction coil with 1.0 mm liftoff. Legend: TMR, tunneling magnetoresistance.</p> "> Figure 6
<p>Signal changes of 7 mm deep slit between 0.1 and 0.9 mm liftoff at a frequency of 1 kHz: (<b>a</b>) real part; (<b>b</b>) imaginary part.</p> "> Figure 7
<p>Vertical line-scan results of the 7 mm deep crack in the flat plate at a frequency of 1 kHz: (<b>a</b>) real part of the differential vector; (<b>b</b>) imaginary part of the differential vector; (<b>c</b>) liftoff dependence of the peak-to-peak real part values; (<b>d</b>) liftoff dependence of the peak-to-peak imaginary part values.</p> "> Figure 8
<p>Tilted line-scan results of the 7 mm deep crack in the flat plate at a frequency of 1 kHz: (<b>a</b>) real part of the differential vector; (<b>b</b>) imaginary part of the differential vector; (<b>c</b>) liftoff dependence of the peak-to-peak real part values; (<b>d</b>) liftoff dependence of the peak-to-peak imaginary part value.</p> "> Figure 9
<p>Comparison of the gradients between the crack signal <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mi mathvariant="normal">C</mi> </msub> </mrow> </semantics></math> and liftoff signal <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mi mathvariant="normal">L</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 10
<p>Lissajous curves of the differential vector at a frequency of 1 kHz: (<b>a</b>) vertical line-scan result of the non-crack area; (<b>b</b>) vertical line-scan result of the crack area; (<b>c</b>) tilted line-scan result of the non-crack area; (<b>d</b>) tilted line-scan result of the crack area.</p> "> Figure 10 Cont.
<p>Lissajous curves of the differential vector at a frequency of 1 kHz: (<b>a</b>) vertical line-scan result of the non-crack area; (<b>b</b>) vertical line-scan result of the crack area; (<b>c</b>) tilted line-scan result of the non-crack area; (<b>d</b>) tilted line-scan result of the crack area.</p> "> Figure 11
<p>Peak-to-peak values at frequencies between 200 Hz and 5 kHz with different liftoff: (<b>a</b>) real part of the vertical line-scan; (<b>b</b>) imaginary part of the vertical line-scan; (<b>c</b>) real part of the tilted line-scan; (<b>d</b>) imaginary part of the tilted line-scan.</p> "> Figure 12
<p>The gradient of the crack signal at frequencies between 200 Hz and 5 kHz with different liftoff: (<b>a</b>) the vertical line-scan; (<b>b</b>) the tilted line-scan.</p> "> Figure 13
<p>The subtracted gradient with different frequencies.</p> "> Figure 14
<p>Lissajous curves of the welded part of the U-shaped rib with different-length cracks at frequencies between 1 kHz and 5 kHz: (<b>a</b>) non-crack area; (<b>b</b>) 10 mm length crack; (<b>c</b>) 20 mm length crack; (<b>d</b>) 30 mm length crack.</p> "> Figure 14 Cont.
<p>Lissajous curves of the welded part of the U-shaped rib with different-length cracks at frequencies between 1 kHz and 5 kHz: (<b>a</b>) non-crack area; (<b>b</b>) 10 mm length crack; (<b>c</b>) 20 mm length crack; (<b>d</b>) 30 mm length crack.</p> ">
Abstract
:1. Introduction
2. Test Sample and Measurement System
3. Simulation of Eddy Current and Magnetic Field Distribution
4. Results and Discussion
4.1. Crack Signal of Single Sensor
4.2. Liftoff Dependence of the Differential Parameters
4.3. Lissajous Curve of the Differential Vector
4.4. Frequency Dependence of the Crack Signal
4.5. Steel Cracks in A Complicated Structure
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ghoni, R.; Dollah, M.; Sulaiman, A.; Ibrahim, F.M. Defect Characterization Based on Eddy Current Technique: Technical Review. Adv. Mech. Eng. 2014, 6, 1–11. [Google Scholar] [CrossRef]
- Martín, J.G.; Gil, J.G.; Sánchez, E.V. Non-Destructive Techniques Based on Eddy Current Testing. Sensors 2011, 11, 2525–2565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alatawneh, N.; Underhill, P.R.; Krause, T.W. Low-Frequency Eddy-Current Testing for Detection of Subsurface Cracks in CF-188 Stub Flange. IEEE Sens. J. 2018, 18, 1568–1575. [Google Scholar] [CrossRef]
- Ramos, H.G.; Ribeiro, A.L. Present and Future Impact of Magnetic Sensors in NDE. Procedia Eng. 2014, 86, 406–419. [Google Scholar] [CrossRef] [Green Version]
- Rifai, D.; Abdalla, A.N.; Ali, K.; Razali, R. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications. Sensors 2016, 16, 298. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.; Long, N.; Hunze, A. Eddy Current Testing with Giant Magnetoresistance (GMR) Sensors and a Pipe-Encircling Excitation for Evaluation of Corrosion under Insulation. Sensors 2017, 17, 2229. [Google Scholar] [CrossRef] [PubMed]
- Tsukada, K.; Kiwa, T.; Kawata, T.; Ishihara, Y. Low-Frequency Eddy Current Imaging Using MR Sensor Detecting Tangential Magnetic Field Components for Nondestructive Evaluation. IEEE Trans. Magn. 2006, 42, 3315–3317. [Google Scholar] [CrossRef]
- Hesse, O.; Pankratyev, S. Usage of Magnetic Field Sensors for Low Frequency Eddy Current Testing. Meas. Sci. Rev. 2005, 5, 86–93. [Google Scholar]
- Tsukada, K.; Yoshioka, M.; Kawasaki, Y.; Kiwa, T. Detection of back-side pit on a ferrous plate by magnetic flux leakage method with analyzing magnetic field vector. NDT E Int. 2010, 43, 323–328. [Google Scholar] [CrossRef]
- Tsukada, K.; Majima, Y.; Nakamura, Y.; Yasugi, T.; Song, N.; Sakai, K.; Kiwa, T. Detection of Inner Cracks in Thick Steel Plates Using Unsaturated AC Magnetic Flux Leakage Testing With a Magnetic Resistance Gradiometer. IEEE Trans. Magn. 2017, 53, 1–5. [Google Scholar] [CrossRef]
- Tsukada, K.; Hayashi, M.; Nakamura, Y.; Sakai, K.; Kiwa, T. Small Eddy Current Testing Sensor Probe Using a Tunneling Magnetoresistance Sensor to Detect Cracks in Steel Structures. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Ribeiro, A.L.; Alegria, F.; Postolache, O.A.; Ramos, H.M.G. Liftoff Correction Based on the Spatial Spectral Behavior of Eddy-Current Images. IEEE Trans. Instrum. Meas. 2010, 59, 1362–1367. [Google Scholar] [CrossRef]
- Lu, M.; Zhu, W.; Yin, L.; Peyton, A.J.; Yin, W.; Qu, Z. Reducing the Lift-Off Effect on Permeability Measurement for Magnetic Plates from Multifrequency Induction Data. IEEE Trans. Instrum. Meas. 2018, 67, 167–174. [Google Scholar] [CrossRef]
- Ricci, M.; Silipigni, G.; Ferrigno, L.; Laracca, M.; Adewale, I.D.; Tian, G.Y. Evaluation of the lift-off robustness of eddy current imaging techniques. NDT E Int. 2017, 85, 43–52. [Google Scholar] [CrossRef]
- D’Angelo, G.; Laracca, M.; Rampone, S.; Betta, G. Fast Eddy Current Testing Defect Classification Using Lissajous Figures. IEEE Trans. Instrum. Meas. 2018, 67, 821–830. [Google Scholar] [CrossRef]
- Hayashi, M.; Nakamura, Y.; Sakai, K.; Kiwa, T.; Tsukada, K. Detection method using a dual-channel magnetic sensor for steel cracks in complicated structures. In Proceedings of the 7th Asia-Pacific Workshop on Structural Health Monitoring (APWSHM-2018), Hong Kong, China, 12–15 November 2018; pp. 597–603. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayashi, M.; Saito, T.; Nakamura, Y.; Sakai, K.; Kiwa, T.; Tanikura, I.; Tsukada, K. Extraction Method of Crack Signal for Inspection of Complicated Steel Structures Using A Dual-Channel Magnetic Sensor. Sensors 2019, 19, 3001. https://doi.org/10.3390/s19133001
Hayashi M, Saito T, Nakamura Y, Sakai K, Kiwa T, Tanikura I, Tsukada K. Extraction Method of Crack Signal for Inspection of Complicated Steel Structures Using A Dual-Channel Magnetic Sensor. Sensors. 2019; 19(13):3001. https://doi.org/10.3390/s19133001
Chicago/Turabian StyleHayashi, Minoru, Taisuke Saito, Yoshihiro Nakamura, Kenji Sakai, Toshihiko Kiwa, Izumi Tanikura, and Keiji Tsukada. 2019. "Extraction Method of Crack Signal for Inspection of Complicated Steel Structures Using A Dual-Channel Magnetic Sensor" Sensors 19, no. 13: 3001. https://doi.org/10.3390/s19133001
APA StyleHayashi, M., Saito, T., Nakamura, Y., Sakai, K., Kiwa, T., Tanikura, I., & Tsukada, K. (2019). Extraction Method of Crack Signal for Inspection of Complicated Steel Structures Using A Dual-Channel Magnetic Sensor. Sensors, 19(13), 3001. https://doi.org/10.3390/s19133001