Real-Time Multi-Scale Face Detector on Embedded Devices
<p>The overview of the network architecture of EagleEye face detector. The detection network is built using the information preserving activation function and the convolution factorization in almost all the backbone layers and the predicting layers.</p> "> Figure 2
<p>The illusion of the depth-wise convolution.</p> "> Figure 3
<p>The illustration of using the head–shoulder region as the context information for face detection.</p> "> Figure 4
<p>The illustration of the context module.</p> "> Figure 5
<p>Speed (frames per second (FPS)) versus accuracy (mAP) on FDDB dataset. The speed (FPS) is tested on the ARM Cortex-A53 based embedded device.</p> "> Figure 6
<p>Precision-recall curve on wider face validation (easy) set.</p> "> Figure 7
<p>Precision-recall curve on wider face validation (medium) set.</p> "> Figure 8
<p>Precision-recall curve on wider face validation (hard) set.</p> "> Figure 9
<p>Visualization of the results of EagleEye on wider face dataset.</p> "> Figure 10
<p>Discontinuous receiver operating characteristic (ROC) curves on the FDDB dataset.</p> "> Figure 11
<p>Visualization of the results of EagleEye on FDDB dataset.</p> "> Figure 12
<p>Precision-recall curves on PASCAL face dataset.</p> "> Figure 13
<p>Visualization of the results of EagleEye on Pascal face dataset.</p> ">
Abstract
:1. Introduction
2. Related Work
3. EagleEye
3.1. Baseline Detector
- First, we randomly pad the sampled training images with 0 s to generate images with a larger size. Then use the randomly cropping method to crop the image patches and resize them to the unified size 512 × 512 as the training samples. When cropping, we make sure each cropped patch would have at least one face in it. This would augment the faces of various scales to make each predicting layer fully trained.
- Second, we randomly flip the images in the horizontal direction with a probability of 0.5 to generate new samples.
- Third, we distort the image in various color spaces. This could increase the robustness of the detector to illumination changes.
3.2. Convolution Factorization
3.3. Successive Downsampling Convolutions
3.4. Context Module
3.5. Information Preserving Activation Function
3.6. Focal Loss
4. Experiment
4.1. Experimental Details
4.2. Ablation Study
4.3. Runtime Efficiency
4.4. Memory Complexity
4.5. Comparison with State-of-the-Art on Wider Face Dataset
4.6. Comparison with State-of-the-Arts on FDDB Dataset
4.7. Comparison with State-of-the-Arts on PASCAL Face Dataset
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, J.C.; Lin, W.A.; Zheng, J.; Chellappa, R. A Real-Time Multi-Task Single Shot Face Detector. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 176–180. [Google Scholar]
- Chi, C.; Zhang, S.; Xing, J.; Lei, Z.; Li, S.Z.; Zou, X. Selective Refinement Network for High Performance Face Detection. In Proceedings of the Association for the Advancement of Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019. [Google Scholar]
- Hu, P.; Ramanan, D. Finding Tiny Faces. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1522–1530. [Google Scholar]
- Li, J.; Wang, Y.; Wang, C.; Tai, Y.; Qian, J.; Yang, J.; Wang, C.; Li, J.; Huang, F. DSFD: Dual Shot Face Detector. arXiv 2018, arXiv:1810.10220. [Google Scholar]
- Najibi, M.; Samangouei, P.; Chellappa, R.; Davis, L.S. SSH: Single Stage Headless Face Detector. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4885–4894. [Google Scholar]
- Tian, W.; Wang, Z.; Shen, H.; Deng, W.; Chen, B.; Zhang, X. Learning Better Features for Face Detection with Feature Fusion and Segmentation Supervision. arXiv 2018, arXiv:1811.08557. [Google Scholar]
- Tang, X.; Du, D.K.; He, Z.; Liu, J. PyramidBox: A Context-Assisted Single Shot Face Detector. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 812–828. [Google Scholar]
- Wang, Y.; Ji, X.; Zhou, Z.; Wang, H.; Li, Z. Detecting Faces Using Region-based Fully Convolutional Networks. arXiv 2017, arXiv:1709.05256. [Google Scholar]
- Zhang, J.; Wu, X.; Zhu, J.; Hoi, S.C.H. Feature Agglomeration Networks for Single Stage Face Detection. arXiv 2017, arXiv:1712.00721. [Google Scholar]
- Zhang, S.; Zhu, X.; Lei, Z.; Shi, H.; Wang, X.; Li, S.Z. S3FD: Single Shot Scale-Invariant Face Detector. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 192–201. [Google Scholar]
- Zhang, Y.; Xu, X.; Liu, X. Robust and High Performance Face Detector. arXiv 2019, arXiv:1901.02350. [Google Scholar]
- Zhu, C.; Tao, R.; Luu, K.; Savvides, M. Seeing Small Faces from Robust Anchor’s Perspective. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 5127–5136. [Google Scholar]
- Zhuang, C.; Zhang, S.; Zhu, X.; Lei, Z.; Li, S.Z. Single Shot Attention-Based Face Detector. In Proceedings of the Chinese Conference on Biometric Recognition, Urumqi, China, 11–12 August 2018; pp. 285–293. [Google Scholar]
- Tartaglione, E.; Lepsøy, S.; Fiandrotti, A.; Francini, G. Learning Sparse Neural Networks via Sensitivity-Driven Regularization. Available online: http://papers.nips.cc/paper/7644-learning-sparse-neural-networks-via-sensitivity-driven-regularization.pdf (accessed on 8 May 2019).
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. Squeezenet: Alexnet-level accuracy with 50× fewer parameters and <0.5 mb model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Viola, P.; Jones, M.J. Robust real-time face detection. Int. J. Comput. Vis. 2004, 57, 137–154. [Google Scholar] [CrossRef]
- Yang, B.; Yan, J.; Lei, Z.; Li, S.Z. Aggregate channel features for multi-view face detection. In Proceedings of the 2014 IEEE International Joint Conference on Biometrics (IJCB), Clearwater, FL, USA, 29 September–2 October 2014; pp. 1–8. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Wang, J.; Yuan, Y.; Yu, G. Face attention network: An effective face detector for the occluded faces. arXiv 2017, arXiv:1711.07246. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 2016, 23, 1499–1503. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, X.; Lei, Z.; Shi, H.; Wang, X.; Li, S.Z. Faceboxes: A CPU real-time face detector with high accuracy. In Proceedings of the 2017 IEEE International Joint Conference on Biometrics (IJCB), Denver, CO, USA, 1–4 October 2017; pp. 1–9. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6848–6856. [Google Scholar]
- Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Huang, D. Receptive field block net for accurate and fast object detection. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 385–400. [Google Scholar]
- Zhao, X.; Zhao, C.; Zhu, Y.; Tang, M.; Wang, J. Improved Single Shot Object Detector Using Enhanced Features and Predicting Heads. In Proceedings of the 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM), Xi’an, China, 14–15 September 2018; pp. 1–5. [Google Scholar]
- Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical evaluation of rectified activations in convolutional network. arXiv 2015, arXiv:1505.00853. [Google Scholar]
- Hinton, G.E.; Nair, V. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010. [Google Scholar]
- Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. Proc. ICML 2013, 30, 3. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
- Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus). arXiv 2015, arXiv:1511.07289. [Google Scholar]
- Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for activation functions. arXiv 2017, arXiv:1710.05941. [Google Scholar]
- Shrivastava, A.; Gupta, A.; Girshick, R. Training region-based object detectors with online hard example mining. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 761–769. [Google Scholar]
- Zhou, X.; Yao, C.; Wen, H.; Wang, Y.; Zhou, S.; He, W.; Liang, J. EAST: An efficient and accurate scene text detector. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5551–5560. [Google Scholar]
- Deng, D.; Liu, H.; Li, X.; Cai, D. Pixellink: Detecting scene text via instance segmentation. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Available online: http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf (accessed on 8 May 2019).
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 675–678. [Google Scholar]
- Yang, S.; Luo, P.; Loy, C.C.; Tang, X. Wider face: A face detection benchmark. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 5525–5533. [Google Scholar]
- Jain, V.; Learned-Miller, E. Fddb: A Benchmark for Face Detection in Unconstrained Settings; Technical Report, UMass Amherst Technical Report; UM-CS-2010-009; University of Massachusetts: Amherst, MA, USA, 2010. [Google Scholar]
- Yang, S.; Luo, P.; Loy, C.C.; Tang, X. From Facial Parts Responses to Face Detection: A Deep Learning Approach. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 3676–3684. [Google Scholar]
- Barbu, A.; Lay, N.; Gramajo, G. Face detection with a 3d model. In Academic Press Library in Signal Processing; Elsevier: Amsterdam, The Netherlands, 2018; Volume 6, pp. 237–259. [Google Scholar]
- Farfade, S.S.; Saberian, M.J.; Li, L.J. Multi-view face detection using deep convolutional neural networks. In Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, Shanghai, China, 23–26 June 2015; pp. 643–650. [Google Scholar]
- Ghiasi, G.; Fowlkes, C.C. Occlusion coherence: Detecting and localizing occluded faces. arXiv 2015, arXiv:1506.08347. [Google Scholar]
- Kumar, V.; Namboodiri, A.; Jawahar, C. Visual phrases for exemplar face detection. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1994–2002. [Google Scholar]
- Li, H.; Hua, G.; Lin, Z.; Brandt, J.; Yang, J. Probabilistic elastic part model for unsupervised face detector adaptation. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 793–800. [Google Scholar]
- Li, H.; Lin, Z.; Brandt, J.; Shen, X.; Hua, G. Efficient boosted exemplar-based face detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1843–1850. [Google Scholar]
- Li, J.; Zhang, Y. Learning surf cascade for fast and accurate object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 3468–3475. [Google Scholar]
- Li, Y.; Sun, B.; Wu, T.; Wang, Y. Face detection with end-to-end integration of a convnet and a 3d model. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 420–436. [Google Scholar]
- Liao, S.; Jain, A.K.; Li, S.Z. A fast and accurate unconstrained face detector. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Ohn-Bar, E.; Trivedi, M.M. To boost or not to boost? on the limits of boosted trees for object detection. In Proceedings of the 2016 23rd International Conference on Pattern Recognition, Cancun, Mexico, 4–8 December 2016; pp. 3350–3355. [Google Scholar]
- Ranjan, R.; Patel, V.M.; Chellappa, R. A deep pyramid deformable part model for face detection. In Proceedings of the 2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS), Arlington, VA, USA, 8–11 September 2015; pp. 1–8. [Google Scholar]
- Triantafyllidou, D.; Tefas, A. A fast deep convolutional neural network for face detection in big visual data. In Proceedings of the INNS Conference on Big Data, Thessaloniki, Greece, 23–25 October 2016; pp. 61–70. [Google Scholar]
- Yu, J.; Jiang, Y.; Wang, Z.; Cao, Z.; Huang, T. Unitbox: An advanced object detection network. In Proceedings of the 24th ACM International Conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016; pp. 516–520. [Google Scholar]
- Ranjan, R.; Patel, V.M.; Chellappa, R. Hyperface: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Hua, G.; Wen, F.; Sun, J. Supervised transformer network for efficient face detection. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 122–138. [Google Scholar]
- Kalal, Z.; Matas, J.; Mikolajczyk, K. Weighted Sampling for Large-Scale Boosting. Available online: http://epubs.surrey.ac.uk/806150/1/2008_bmvc.pdf (accessed on 8 May 2019).
- Mathias, M.; Benenson, R.; Pedersoli, M.; Van Gool, L. Face detection without bells and whistles. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 720–735. [Google Scholar]
- Yan, J.; Zhang, X.; Lei, Z.; Li, S.Z. Face detection by structural models. Image Vis. Comput. 2014, 32, 790–799. [Google Scholar] [CrossRef]
- Ramanan, D.; Zhu, X. Face detection, pose estimation, and landmark localization in the Wild. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2879–2886. [Google Scholar]
Type/Stride | Filter Shape | Anchor Size |
---|---|---|
Conv/s2 | — | |
Conv/s2 | — | |
Conv/s2 | — | |
Conv/s1 | — | |
Conv/s2 | — | |
Conv/s1 | 32, 32 | |
Conv/s2 | — | |
Conv/s1 | 64, 64 | |
Conv/s1 | — | |
Conv/s2 | 128, 128 | |
Conv/s1 | — | |
Conv/s2 | 256, 256 |
Type/Stride | Filter Shape | Anchor Size | |
---|---|---|---|
Conv/s2 | — | ||
Conv dw/s2 | dw | — | |
Conv/s1 | — | ||
Conv dw/s2 | dw | — | |
Conv/s1 | — | ||
Conv dw/s1 | dw | — | |
Conv/s1 | — | ||
Conv dw/s2 | dw | — | |
Conv/s1 | — | ||
Conv dw/s1 | dw | — | |
Conv/s1 | — | ||
Slice | — | — | |
Conv dw/s1/d1, | dw | — | |
Conv dw/s1/d2 | dw | — | |
Concat | — | — | |
Conv/s1 | 32, 32 | ||
Conv dw/s2 | dw | — | |
Conv/s1 | — | ||
Conv dw/s1 | dw | — | |
Conv/s1 | 64, 64 | ||
Conv/s1 | — | ||
Conv dw/s2 | dw | — | |
Conv/s1 | 128, 128 | ||
Conv/s1 | — | ||
Conv dw/s2 | dw | — | |
Conv/s1 | 256, 256 |
Contributions | Baseline | EagleEye512 | ||||
---|---|---|---|---|---|---|
Convolution Factorization | √ | √ | √ | √ | √ | |
Successive Downsampling Convolutions | √ | √ | √ | √ | ||
Context Module | √ | √ | √ | |||
Information Preserving Activation Function | √ | √ | ||||
Focal Loss | √ | |||||
Accuracy (mAP[easy]) | 87.9 | 83.7 | 82.2 | 82.9 | 83.3 | 84.1 |
FLOPS | 440.3 M | 87.5 M | 72.6 M | 78.7 M | 75.3 M | 75.3 M |
Method | mAP [Easy] | mAP [Medium] | mAP [Hard] | FLOPS |
---|---|---|---|---|
ReLU | 82.9 | 76.5 | 46.5 | 72.6 M |
PReLU | 83.3 | 77.1 | 49.5 | 75.3 M |
Leaky ReLU | 83.4 | 76.8 | 48.2 | 75.3 M |
Method | mAP [Easy] | mAP [Medium] | mAP [Hard] | FLOPS |
---|---|---|---|---|
Baseline | 87.9 | 84.0 | 61.4 | 440.3 M |
Baseline | 74.7 | 65.5 | 34.7 | 80.7 M |
EagleEye512 | 84.1 | 79.1 | 46.2 | 75.3 M |
Method | mAP on FDDB | Desktop | ARM Based Embedded Devices | ||
---|---|---|---|---|---|
FPS | CPU (Desktop Devices) | FPS | CPU (Embedded) | ||
ACF [17] | 85.2 | 20 | [email protected] | N/A | ARM [email protected] |
MTCNN [24] | 94.4 | 16 | N/[email protected] | 5.4 | ARM [email protected] |
Faceboxes [25] | 96.0 | 20 | [email protected] | 3.4 | ARM [email protected] |
-SSD-MobileNet | 96.0 | 20 | [email protected] | 10 | ARM [email protected] |
EagleEye | 96.1 | 21 | [email protected] | 20 | ARM [email protected] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Liang, X.; Zhao, C.; Tang, M.; Wang, J. Real-Time Multi-Scale Face Detector on Embedded Devices. Sensors 2019, 19, 2158. https://doi.org/10.3390/s19092158
Zhao X, Liang X, Zhao C, Tang M, Wang J. Real-Time Multi-Scale Face Detector on Embedded Devices. Sensors. 2019; 19(9):2158. https://doi.org/10.3390/s19092158
Chicago/Turabian StyleZhao, Xu, Xiaoqing Liang, Chaoyang Zhao, Ming Tang, and Jinqiao Wang. 2019. "Real-Time Multi-Scale Face Detector on Embedded Devices" Sensors 19, no. 9: 2158. https://doi.org/10.3390/s19092158