The Validity and Reliability of a Kinect v2-Based Gait Analysis System for Children with Cerebral Palsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Setups
2.3. Data Analysis
2.4. Statistics
3. Results
3.1. Joint Kinematic Validity
3.2. Joint Kinematic Reliability
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thomason, P.; Rodda, J.; Sangeux, M.; Selber, P.; Graham, K. Management of children with ambulatory cerebral palsy: An evidence-based review. Commentary by hugh williamson gait laboratory staff. J. Pediatr. Orthop. 2012, 32, S182–S186. [Google Scholar] [CrossRef]
- Simon, S.R. Quantification of human motion: Gait analysis—Benefits and limitations to its application to clinical problems. J. Biomech. 2004, 37, 1869–1880. [Google Scholar] [CrossRef] [PubMed]
- Van den Noort, J.C.; Ferrari, A.; Cutti, A.G.; Becher, J.G.; Harlaar, J. Gait analysis in children with cerebral palsy via inertial and magnetic sensors. Med. Biol. Eng. Comput. 2013, 51, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Menna, F.; Remondino, F.; Battisti, R.; Nocerino, E. Geometric investigation of a gaming active device. Proc. SPIE 2011, 8085, 80850G. [Google Scholar] [CrossRef]
- Biswas, K.K.; Basu, S.K. Gesture recognition using microsoft kinect®. In Proceedings of the 2011 5th International Conference on Automation, Robotics and Applications (ICARA), Wellington, New Zealand, 6–8 December 2011; pp. 100–103. [Google Scholar]
- Haggag, H.; Hossny, M.; Nahavandi, S.; Creighton, D. Real time ergonomic assessment for assembly operations using kinect. In Proceedings of the 2013 UKSim 15th International Conference on Computer Modelling and Simulation (UKSim), Cambridge, UK, 10–12 April 2013; pp. 495–500. [Google Scholar]
- Chang, C.-Y.; Lange, B.; Zhang, M.; Koenig, S.; Requejo, P.; Somboon, N.; Sawchuk, A.A.; Rizzo, A.A. Towards pervasive physical rehabilitation using microsoft kinect. In Proceedings of the 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), San Diego, CA, USA, 21–24 May 2012; pp. 159–162. [Google Scholar]
- Clark, R.A.; Pua, Y.-H.; Fortin, K.; Ritchie, C.; Webster, K.E.; Denehy, L.; Bryant, A.L. Validity of the microsoft kinect for assessment of postural control. Gait Posture 2012, 36, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Galna, B.; Barry, G.; Jackson, D.; Mhiripiri, D.; Olivier, P.; Rochester, L. Accuracy of the microsoft kinect sensor for measuring movement in people with parkinson’s disease. Gait Posture 2014, 39, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.A.; Pua, Y.-H.; Oliveira, C.C.; Bower, K.J.; Thilarajah, S.; McGaw, R.; Hasanki, K.; Mentiplay, B.F. Reliability and concurrent validity of the microsoft xbox one kinect for assessment of standing balance and postural control. Gait Posture 2015, 42, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Huber, M.; Seitz, A.; Leeser, M.; Sternad, D. Validity and reliability of kinect skeleton for measuring shoulder joint angles: A feasibility study. Physiotherapy 2015, 101, 389–393. [Google Scholar] [CrossRef]
- Xu, X.; Robertson, M.; Chen, K.B.; Lin, J.-H.; McGorry, R.W. Using the microsoft kinect™ to assess 3-d shoulder kinematics during computer use. Appl. Ergon. 2017, 65, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Guess, T.M.; Razu, S.; Jahandar, A.; Skubic, M.; Huo, Z. Comparison of 3D joint angles measured with the kinect 2.0 skeletal tracker versus a marker-based motion capture system. J. Appl. Biomech. 2017, 33, 176–181. [Google Scholar] [CrossRef]
- Mentiplay, B.F.; Hasanki, K.; Perraton, L.G.; Pua, Y.-H.; Charlton, P.C.; Clark, R.A. Three-dimensional assessment of squats and drop jumps using the microsoft xbox one kinect: Reliability and validity. J. Sports Sci. 2018, 36, 2202–2209. [Google Scholar] [CrossRef]
- Schmitz, A.; Ye, M.; Boggess, G.; Shapiro, R.; Yang, R.; Noehren, B. The measurement of in vivo joint angles during a squat using a single camera markerless motion capture system as compared to a marker based system. Gait Posture 2015, 41, 694–698. [Google Scholar] [CrossRef]
- Eltoukhy, M.; Kuenze, C.; Oh, J.; Apanovitch, E.; Butler, L.; Signorile, J.F. Concurrent validity of depth-sensing cameras for noncontact acl injury screening during side-cut maneuvers in adolescent athletes: A preliminary study. J. Appl. Biomech. 2019, 35, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Springer, S.; Yogev Seligmann, G. Validity of the kinect for gait assessment: A focused review. Sensors 2016, 16, 194. [Google Scholar] [CrossRef] [PubMed]
- Mentiplay, B.F.; Perraton, L.G.; Bower, K.J.; Pua, Y.-H.; McGaw, R.; Heywood, S.; Clark, R.A. Gait assessment using the microsoft xbox one kinect: Concurrent validity and inter-day reliability of spatiotemporal and kinematic variables. J. Biomech. 2015, 48, 2166–2170. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; McGorry, R.W.; Chou, L.-S.; Lin, J.-H.; Chang, C.-C. Accuracy of the microsoft kinect™ for measuring gait parameters during treadmill walking. Gait Posture 2015, 42, 145–151. [Google Scholar] [CrossRef]
- Eltoukhy, M.; Oh, J.; Kuenze, C.; Signorile, J. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment. Gait Posture 2017, 51, 77–83. [Google Scholar] [CrossRef]
- Tanaka, R.; Takimoto, H.; Yamasaki, T.; Higashi, A. Validity of time series kinematical data as measured by a markerless motion capture system on a flatland for gait assessment. J. Biomech. 2018. [Google Scholar] [CrossRef]
- Timmi, A.; Coates, G.; Fortin, K.; Ackland, D.; Bryant, A.L.; Gordon, I.; Pivonka, P. Accuracy of a novel marker tracking approach based on the low-cost microsoft kinect v2 sensor. Med. Eng. Phys. 2018, 59, 63–69. [Google Scholar] [CrossRef]
- Liu, D.-X.; Wu, X.; Du, W.; Wang, C.; Chen, C.; Xu, T. Deep spatial-temporal model for rehabilitation gait: Optimal trajectory generation for knee joint of lower-limb exoskeleton. Assem. Autom. 2017, 37, 369–378. [Google Scholar] [CrossRef]
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Systems; Neural Information Processing Systems (Nips): La Jolla, CA, USA, 2014; pp. 3104–3112. [Google Scholar]
- Liu, J.; Shahroudy, A.; Xu, D.; Kot, A.C.; Wang, G. Skeleton-based action recognition using spatio-temporal lstm network with trust gates. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 3007–3021. [Google Scholar] [CrossRef]
- Song, S.; Lan, C.; Xing, J.; Zeng, W.; Liu, J. Spatio-temporal attention-based lstm networks for 3d action recognition and detection. IEEE Trans. Image Process. 2018, 27, 3459–3471. [Google Scholar] [CrossRef]
- Eltoukhy, M.; Kuenze, C.; Oh, J.; Jacopetti, M.; Wooten, S.; Signorile, J. Microsoft kinect can distinguish differences in over-ground gait between older persons with and without parkinson’s disease. Med. Eng. Phys. 2017, 44, 1–7. [Google Scholar] [CrossRef]
- Pfister, A.; West, A.M.; Bronner, S.; Noah, J.A. Comparative abilities of microsoft kinect and vicon 3d motion capture for gait analysis. J. Med. Eng. Technol. 2014, 38, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Papegaaij, S.; Steenbrink, F. Clinical Gait Analysis: Treadmill-Based vs Overground; Motek Inc.: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Clark, R.A.; Vernon, S.; Mentiplay, B.F.; Miller, K.J.; McGinley, J.L.; Pua, Y.H.; Paterson, K.; Bower, K.J. Instrumenting gait assessment using the kinect in people living with stroke: Reliability and association with balance tests. J. Neuroeng. Rehabil. 2015, 12, 15. [Google Scholar] [CrossRef]
- McGinley, J.L.; Baker, R.; Wolfe, R.; Morris, M.E. The reliability of three-dimensional kinematic gait measurements: A systematic review. Gait Posture 2009, 29, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Palisano, R.; Rosenbaum, P.; Walter, S.; Russell, D.; Wood, E.; Galuppi, B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev. Med. Child Neurol. 1997, 39, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, D.H. The evolution of clinical gait analysis: Part ii kinematics. Gait Posture 2002, 16, 159–179. [Google Scholar] [CrossRef]
- Mackey, A.H.; Walt, S.E.; Lobb, G.A.; Stott, N.S. Reliability of upper and lower limb three-dimensional kinematics in children with hemiplegia. Gait Posture 2005, 22, 1–9. [Google Scholar] [CrossRef]
- Bell, A.L.; Brand, R.A.; Pedersen, D.R. Prediction of hip joint centre location from external landmarks. Hum. Mov. Sci. 1989, 8, 3–16. [Google Scholar] [CrossRef]
- Grood, E.S.; Suntay, W.J. A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee. J. Biomech. Eng. 1983, 105, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Siegler, S.; Allard, P.; Kirtley, C.; Leardini, A.; Rosenbaum, D.; Whittle, M.; D’Lima, D.; Cristofolini, L.; Witte, H. Isb recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part i: Ankle, hip, and spine. J. Biomech. 2002, 35, 543–548. [Google Scholar] [CrossRef]
- Sak, H.; Senior, A.; Beaufays, F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In Proceedings of the Fifteenth annual conference of the international speech communication association, Singapore, 14–18 September 2014. [Google Scholar]
- Kadaba, M.; Ramakrishnan, H.; Wootten, M.; Gainey, J.; Gorton, G.; Cochran, G. Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J. Orthop. Res. 1989, 7, 849–860. [Google Scholar] [CrossRef]
- Garofalo, P.; Cutti, A.G.; Filippi, M.V.; Cavazza, S.; Ferrari, A.; Cappello, A.; Davalli, A. Inter-operator reliability and prediction bands of a novel protocol to measure the coordinated movements of shoulder-girdle and humerus in clinical settings. Med. Biol. Eng. Comput. 2009, 47, 475–486. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420. [Google Scholar] [CrossRef]
- Fleiss, J.L. Design and Analysis of Clinical Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 73. [Google Scholar]
- Denegar, C.R.; Ball, D.W. Assessing reliability and precision of measurement: An introduction to intraclass correlation and standard error of measurement. J. Sport Rehabil. 1993, 2, 35–42. [Google Scholar] [CrossRef]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the sem. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar]
- Kwon, J.-Y.; Chang, H.J.; Lee, J.Y.; Ha, Y.; Lee, P.K.; Kim, Y.-H. Effects of hippotherapy on gait parameters in children with bilateral spastic cerebral palsy. Arch. Phys. Med. Rehabil. 2011, 92, 774–779. [Google Scholar] [CrossRef]
- Otte, K.; Kayser, B.; Mansow-Model, S.; Verrel, J.; Paul, F.; Brandt, A.U.; Schmitz-Hübsch, T. Accuracy and reliability of the kinect version 2 for clinical measurement of motor function. PLoS ONE 2016, 11, e0166532. [Google Scholar] [CrossRef]
- Geerse, D.J.; Coolen, B.H.; Roerdink, M. Kinematic validation of a multi-kinect v2 instrumented 10-meter walkway for quantitative gait assessments. PLOS oNE 2015, 10, e0139913. [Google Scholar] [CrossRef]
- Davis, R.B., III; Ounpuu, S.; Tyburski, D.; Gage, J.R. A gait analysis data collection and reduction technique. Hum. Mov. Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Dobson, F.; Morris, M.E.; Baker, R.; Graham, H.K. Gait classification in children with cerebral palsy: A systematic review. Gait Posture 2007, 25, 140–152. [Google Scholar] [CrossRef]
- Oh, J.; Kuenze, C.; Jacopetti, M.; Signorile, J.F.; Eltoukhy, M. Validity of the microsoft kinect™ in assessing spatiotemporal and lower extremity kinematics during stair ascent and descent in healthy young individuals. Med. Eng. Phys. 2018, 60, 70–76. [Google Scholar] [CrossRef]
- Kharazi, M.; Memari, A.; Shahrokhi, A.; Nabavi, H.; Khorami, S.; Rasooli, A.; Barnamei, H.; Jamshidian, A.; Mirbagheri, M. Validity of microsoft kinecttm for measuring gait parameters. In Proceedings of the 2015 22nd Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, 25–27 November 2015; pp. 375–379. [Google Scholar]
- Dubois, A.; Charpillet, F. Measuring frailty and detecting falls for elderly home care using depth camera. J. Ambient Intell. Smart Environ. 2017, 9, 469–481. [Google Scholar] [CrossRef] [Green Version]
- Dubois, A.; Bresciani, J.-P. Validation of an ambient system for the measurement of gait parameters. J. Biomech. 2018, 69, 175–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stolze, H.; Kuhtz-Buschbeck, J.; Mondwurf, C.; Jöhnk, K.; Friege, L. Retest reliability of spatiotemporal gait parameters in children and adults. Gait Posture 1998, 7, 125–130. [Google Scholar] [CrossRef]
- Steinwender, G.; Saraph, V.; Scheiber, S.; Zwick, E.B.; Uitz, C.; Hackl, K. Intrasubject repeatability of gait analysis data in normal and spastic children. Clin. Biomech. 2000, 15, 134–139. [Google Scholar] [CrossRef]
Characteristics | Experimental Group (n = 10) |
---|---|
Age, y | 6.4 (2.2) |
Weight, kg | 23.2 (7.4) |
Height, cm | 116.7 (11.0) |
Gender, M/F | 3/7 |
GMFCS level, n | |
I | 3 |
II | 7 |
Type of CP, n | |
Hemiplegia | 1 |
Diplegia | 5 |
Quadriplegia | 2 |
Dyskinetic | 2 |
Segment | Kinect | Motion Analysis |
---|---|---|
Right pelvis | Origin: spine base marker; y-axis: unit vector from the spine base to spine mid; x-axis: cross-product of y-axis and the unit vector from hip left to hip right; z-axis: cross product of x and y-axis. | Origin: mid-point between the mid-anterior superior iliac spines and sacrum; x-axis: unit vector from the origin to the right anterior superior iliac spine; z-axis: unit vector perpendicular to the plane formed by the anterior superior iliac spines and sacrum); y-axis: cross product of z and x-axis. |
Right thigh | Origin: knee right marker; y-axis: unit vector from knee right to hip right; z-axis: cross-product of y-axis and the vector from ankle right to knee right; x-axis: cross-product of y and z-axis. | Origin: mid-point between lateral and medial knee markers; z-axis: unit vector from the origin to right pelvis origin; y-axis: unit vector perpendicular to the plane which formed by right hip origin, lateral and medial knee markers; x-axis: cross product of y and z-axis. |
Right shank | The knee angle calculated by Kinect equaled the supplementary angle of the angle between vector pointing from hip right to knee right and vector pointing from knee right to ankle right. | Origin: mid-point between lateral and medial ankle markers; z-axis: unit vector from origin to right thigh origin; y-axis: unit vector perpendicular to the plane formed by right thigh origin, right lateral and medial ankle markers; x-axis: cross product of y and z-axis. |
Right foot | The ankle angle calculated by Kinect was the angle between the vector pointing from ankle right to knee right and the vector pointing from ankle right to foot right subtract 90°. | Origin: the 2nd metatarsal joint; y-axis: unit vector from the origin to right shank origin; x-axis: unit vector perpendicular to the plane formed by heel, origin and right shank origin; y-axis: cross product of z and x-axis. |
Joint Angles | RMSE (degree) | CMC | ||||
---|---|---|---|---|---|---|
Kinect | Calibrated by LR | Calibrated by LSTM | Kinect | Calibrated by LR | Calibrated by LSTM | |
Hip flexion/extension | 20.7 ± 8.8 | 11.5 ± 4.1 | 11.2 ± 4.9 | 0.45 ± 0.36 | 0.81 ± 0.10 | 0.75 ± 0.22 |
Hip abduction/adduction | 12.5 ± 3.4 | 4.7 ± 2.2 | 5.2 ± 1.7 | <0.001 | 0.41 ± 0.35 | 0.42 ± 0.37 |
Hip int/external rotation | 40.2 ± 22.6 | 18.0 ± 8.7 | 10.3 ± 4.6 | <0.001 | <0.001 | <0.001 |
Knee flexion/extension | 16.7 ± 4.2 | 14.1 ± 4.8 | 10.5 ± 5.1 | 0.70 ± 0.12 | 0.85 ± 0.07 | 0.87 ± 0.12 |
Ankle dorsi/plantarflexion | 23.0 ± 5.0 | 13.7 ± 5.8 | 7.5 ± 3.0 | <0.001 | <0.001 | 0.43 ± 0.38 |
Joint Angles | r/rs | |||||
---|---|---|---|---|---|---|
Kinect | Motion Analysis | Calibrated by LR | Calibrated by LSTM | Kinect/Calibrated by LR | Calibrated by LSTM | |
Hip flexion/extension | ||||||
maximum | 42.4 ± 6.6 | 57.8 ± 7.2 | 55.5 ± 6.0 | 56.2 ± 5.4 | 0.02 | −0.02 |
minimum | −4.2 ± 7.6 | 14.1 ± 9.3 | 12.6 ± 7.0 | 24.2 ± 5.7 | 0.20 a | −0.18 |
ROM | 46.6 ± 11.4 | 39.7 ± 9.7 | 42.9 ± 10.5 | 32.0 ± 6.5 | 0.55 | 0.26 |
initial contact | 30.5 ± 8.2 | 49.4 ± 8.3 | 44.6 ± 7.5 | 48.7 ± 1.4 | 0.19 | −0.51 |
Hip adduction/abduction | ||||||
maximum | −5.2 ± 4.2 | 7.4 ± 5.7 | 4.9 ± 3.7 | 7.5 ± 2.1 | 0.72 a, b | 0.37 |
minimum | −14.2 ± 4.8 | −5.0 ± 4.1 | −2.9 ± 4.2 | −3.6 ± 2.7 | 0.26 | −0.25 a |
ROM | 9.0 ± 5.4 | 12.3 ± 7.3 | 7.8 ± 4.7 | 11.2 ± 3.4 | 0.15a | −0.67 |
initial contact | −9.3 ± 5.8 | −0.003 ± 5.0 | 1.3 ± 5.1 | 1.0 ± 0.9 | 0.37 | −0.64 b |
Hip int/external rotation | ||||||
maximum | 1.4 ± 13.7 | 7.3 ± 8.7 | −11.6 ± 4.4 | 7.7 ± 6.6 | 0.12 | −0.23 |
minimum | −67.9 ± 43.7 | −4.5 ± 10.4 | −18.5 ± 1.4 | −4.7 ± 3.5 | 0.12 | −0.22 |
ROM | 69.3 ± 46.3 | 11.9 ± 6.5 | 6.9 ± 4.6 | 12.4 ± 5.5 | 0.58 | 0.18 a |
initial contact | −9.8 ± 21.2 | 0.1 ± 10.9 | −17.4 ± 2.1 | 0.4 ± 1.4 | −0.17 | −0.86 c |
Knee flexion/extension | ||||||
maximum | 46.7 ± 7.5 | 71.2 ± 8.6 | 70.6 ± 12.5 | 65.9 ± 6.8 | 0.32 | 0.28 |
minimum | 10.8 ± 5.8 | 15.3 ± 10.4 | 10.7 ± 9.7 | 18.1 ± 6.0 | 0.14 a | 0.13 |
ROM | 35.9 ± 10.3 | 55.9 ± 16.2 | 60.0 ± 17.1 | 47.7 ± 10.5 | 0.43 | 0.59 |
initial contact | 21.1 ± 9.1 | 31.7 ± 8.1 | 27.9 ± 15.2 | 30.0 ± 1.1 | 0.41 | −0.02 |
Ankle dorsi/plantar flexion | ||||||
maximum | 1.3 ± 6.3 | 10.5 ± 6.9 | −6.2 ± 1.2 | 10.2 ± 3.7 | 0.09 | 0.04 |
minimum | −34.7 ± 6.2 | −7.8 ± 7.6 | −13.0 ± 1.2 | −7.8 ± 2.1 | 0.77 c | −0.10 |
ROM | 36.0 ± 7.0 | 18.3 ± 6.0 | 6.8 ± 1.3 | 18.0 ± 4.9 | 0.26 | 0.49 |
initial contact | −26.6 ± 8.6 | −4.6 ± 6.5 | −7.7 ± 1.6 | −6.4 ± 0.9 | 0.75 b | −0.72 b |
Joint Angles | RMSE (degree) | CMC |
---|---|---|
Hip flexion/extension | 5.3 ± 2.6 | 0.97 ± 0.05 |
Hip abduction/adduction | 6.6 ± 3.6 | 0.30 ± 0.36 |
Hip internal/external rotation | 43.4 ± 36.4 | 0.40 ± 0.43 |
Knee flexion/extension | 7.9 ± 3.6 | 0.88 ± 0.12 |
Ankle dorsi/plantarflexion | 17.5 ± 9.6 | 0.44 + 0.40 |
Joint Angles | ICC2,k | SEM | ||
---|---|---|---|---|
Day 1 | Day 2 | |||
Hip flexion/extension | ||||
maximum | 37.5 ± 7.3 | 40.3 ± 4.3 | 0.77(0.16, 0.94) | 2.89 |
minimum | 13.1 ± 7.2 | 9 ± 5.7 | 0.80(0.09, 0.95) | 2.94 |
ROM | 50.6 ± 8.6 | 49.5 ± 6.7 | 0.93(0.73, 0.98) | 1.83 |
initial contact | 34.2 ± 7.9 | 36.3 ± 6.1 | 0.86(0.49, 0.97) | 2.78 |
Hip adduction/abduction | ||||
maximum | 3.0 ± 5.0 | 2.1 ± 5.3 | 0.46(−0.38, 0.84) | 4.16 |
minimum | 8.3 ± 2.9 | 12.7 ± 4.4 | 0.21(−0.56, 0.74) | 3.81 |
ROM | 11.3 ± 4.0 | 10.6 ± 3.5 | 0.59(−0.79, 0.90) | 2.34 |
initial contact | 4.0 ± 6.3 | 9.4 ± 6.7 | 0.53(−0.34, 0.87) | 4.75 |
Hip internal/external rotation | ||||
maximum | 35.7 ± 34.6 | 11.8 ± 28.4 | 0.37(−0.72,0.82) | 26.36 |
minimum | 50.5 ± 50.9 | 69.9 ± 45.5 | −0.23(−4.69,0.70) | 53.37 |
ROM | 86.2 ± 56.1 | 81.7 ± 39.3 | 0.64(−0.63, 0.91) | 28.37 |
initial contact | 0.7 ± 20.9 | 5.4 ± 20.0 | 0.46(−1.26, 0.87) | 14.86 |
Knee flexion/extension | ||||
maximum | 45.1 ± 9.0 | 45.6 ± 7.2 | 0.62(−0.73, 0.91) | 4.87 |
minimum | 8.3 ± 6.0 | 8.0 ± 2.1 | 0.48(−1.51, 0.88) | 3.15 |
ROM | 36.7 ± 8.74 | 37.6 ± 6.5 | 0.36(−2.2, 0.85) | 6.02 |
initial contact | 24.3 ± 6.8 | 20.6 ± 5.5 | 0.45(−0.70, 0.85) | 4.69 |
Ankle dorsi/plantar flexion | ||||
maximum | 9.8 ± 21.1 | 3.7 ± 17.1 | 0.50(−1.0, 0.88) | 13.42 |
minimum | −33.8 ± 7.4 | −37.4 ± 8.1 | 0.05(−2.7, 0.76) | 7.59 |
ROM | 43.6 ± 22.0 | 41.2 ± 13.4 | 0.62(−0.72, 0.91) | 11.03 |
initial contact | −25.5 ± 10.6 | −32.3 ± 13.4 | 0.27(−1.39, 0.81) | 10.49 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Mithraratne, K.; Wilson, N.C.; Wang, X.; Ma, Y.; Zhang, Y. The Validity and Reliability of a Kinect v2-Based Gait Analysis System for Children with Cerebral Palsy. Sensors 2019, 19, 1660. https://doi.org/10.3390/s19071660
Ma Y, Mithraratne K, Wilson NC, Wang X, Ma Y, Zhang Y. The Validity and Reliability of a Kinect v2-Based Gait Analysis System for Children with Cerebral Palsy. Sensors. 2019; 19(7):1660. https://doi.org/10.3390/s19071660
Chicago/Turabian StyleMa, Yunru, Kumar Mithraratne, Nichola C. Wilson, Xiangbin Wang, Ye Ma, and Yanxin Zhang. 2019. "The Validity and Reliability of a Kinect v2-Based Gait Analysis System for Children with Cerebral Palsy" Sensors 19, no. 7: 1660. https://doi.org/10.3390/s19071660