Electronic Nose-Based Technique for Rapid Detection and Recognition of Moldy Apples
<p>Time-dependent data response of the PEN3 electronic nose.</p> "> Figure 2
<p>Cultured molds: (<b>a</b>) culture medium without mold; (<b>b</b>) <span class="html-italic">Penicilliumex pansum</span>; and (<b>c</b>) <span class="html-italic">Aspergillus niger</span>. Conditions: culture at 25 °C for 5 days; dish: 90 mm.</p> "> Figure 3
<p>Single apple samples inoculated with different molds: (<b>a</b>) no mold (fresh apple); (<b>b</b>) <span class="html-italic">Penicillium expansum</span>; and (<b>c</b>) <span class="html-italic">Aspergillus niger</span>; (<b>d</b>) Canned apple samples inoculated with single mold (fresh apples: moldy apple = 9:1). Conditions: maintained at 4 °C for 5 days.</p> "> Figure 4
<p>The gas sensors responses of the PEN3 electronic nose to apples inoculated with different molds.</p> "> Figure 5
<p>Diagram of the RBFNN iteration process result.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Method of Mold Inoculation
2.2.1. Culture and Purification of the Molds
2.2.2. Mold Inoculation of Apples
2.3. Apple Sample Set Division
2.4. Characteristic Data Collection of Apples Using an Electronic Nose
2.5. Data Preprocessing
3. Results and Discussion
3.1. Mold Culture and Inoculation on Apple
3.2. Determination of Characteristic Flavorgas Sensors
3.3. Data Analysis
3.3.1. LDA Analysis
3.3.2. SVM Analysis.
3.3.3. RBFNN Analysis
3.3.4. BPNN Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hu, Q.Y.; Hu, T.L.; Wang, Y.N.; Wang, S.T.; Cao, K.Q. Survey on the occurrence and distribution of apple diseases in China. Plant Prot. 2016, 42, 175–179. [Google Scholar]
- Yu, Q.G.; Gong, M.B.; Wei, S.W.; Zheng, X.Q.; Zhang, Y.W. Classification and identification of apple diseases. North. Hortic. 1998, 6, 47–48. [Google Scholar]
- Liang, J.; Li, H.F.; Zhao, Z.Y.; Fan, M.T. Determination of cyhalothrin pesticide residue in apple by capillary GC method. Agric. Res. Arid Areas 2008, 26, 49–50. [Google Scholar]
- Fan, L.; Ren, X.L.; Xiang, C.Y.; Kang, J. Aroma quality of Gala apple during storage evaluated by electronic nose and gas chromatography-mass spectrometry. Food Sci. 2014, 35, 164–169. [Google Scholar]
- Qu, Y.L.; Gong, Y.J. Application of near infrared spectroscopy in nondestructive testing of apple quality. Agric. Sci. Technol. Equip. 2014, 6, 32–33. [Google Scholar]
- Jin, C.Y.; Cui, Y.; Wang, Y. Electronic nose and its latest research progress in various fields. Sens. World 2010, 16, 6–10. [Google Scholar]
- Xu, S.; Sun, X.; Lu, H.; Yang, H.; Ruan, Q.; Huang, H.; Chen, M. Detecting and monitoring the flavor of tomato (Solanum lycopersicum) under the impact of postharvest handlings by physicochemical parameters and electronic nose. Sensors 2018, 18, 1847. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.S.; Liang, G.; Wang, Y.; Wang, J. Electronic noses as a powerful tool for assessing meat quality: A mini review. Food Anal. Methods 2018, 11, 2916–2924. [Google Scholar] [CrossRef]
- Gardner, J.W.; Bartlett, P.N. A Brief History of Electronic Nose. Sens. Actuators B Chem. 1994, 18–19, 211–220. [Google Scholar] [CrossRef]
- Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982, 299, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Noureddine, E.B.; Eduard, L.; Nezha, E.B.; OrcID, N.E.B.; Xavier, C.; Benachir, B.B. Electronic Nose Based on Metal Oxide Semiconductor Sensors as an Alternative Technique for the Spoilage Classification of Red Meat. Sensors 2008, 8, 142–156. [Google Scholar] [Green Version]
- Li, H.H.; Chen, Q.S.; Zhao, J.W.; Ouyang, Q. Non-destructive evaluation of pork freshness using a portable electronic nose (E-nose) based on a colorimetric sensor array. Anal. Methods 2014, 6, 6271–6277. [Google Scholar] [CrossRef]
- Di Rosa, A.R.; Leone, F.; Cheli, F.; Chiofalo, V. Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment—A review. J. Food Eng. 2017, 210, 62–75. [Google Scholar] [CrossRef]
- Śliwińska, M.; Wiśniewska, P.; Dymerski, T.; Namieśnik, J.; Wardencki, W. Food analysis using artificial senses. J. Agric. Food Chem. 2014, 62, 1423–1448. [Google Scholar] [CrossRef]
- Haddi, Z.; Mabrouk, S.; Bougrini, M.; Tahri, K.; Sghaier, K.; Barhoumi, H.; El Bari, N.; Maaref, A.; Jaffrezic-Renault, N.; Bouchikhi, B. E-Nose and e-Tongue combination for improved recognition of fruit juice samples. Food Chem. 2014, 150, 246–253. [Google Scholar] [CrossRef]
- Borràs, E.; Ferré, J.; Boqué, R.; Mestres, M.; Aceña, L.; Busto, O. Data fusion methodologies for food and beverage authentication and quality assessment—A review. Anal. Chim. Acta 2015, 891, 1–14. [Google Scholar] [CrossRef]
- Russo, M.; di Sanzo, R.; Cefaly, V.; Carabetta, S.; Serra, D.; Fuda, S. Nondestructive flavor evaluation of red onion (Allium cepa L.) Ecotypes: An electronic-nose-based approach. Food Chem. 2013, 141, 896–899. [Google Scholar] [CrossRef] [PubMed]
- Konduru, T.; Rains, G.C.; Li, C. Detecting sour skin infected onions using a customized gas sensor array. J. Food Eng. 2015, 160, 19–27. [Google Scholar] [CrossRef]
- Spinelli, F.; Cellini, A.; Lucchese, C.; Braschi, I. Detection of potato brown rot and ring rot by electronic nose: From laboratory to real scale. Talanta 2014, 129, 422–430. [Google Scholar]
- Cheng, S.M.; Wang, J.; Wang, Y.W.; Ma, Y.H. Research on distinguishing tomato seeding infected with early blight disease by electronic nose. Bull. Sci. Technol. 2013, 29, 68–77. [Google Scholar]
- Yin, Y.; Hao, Y.F.; Yu, H.C. Identification method for different moldy degrees of maize using electronic nose coupled with multi-features fusion. Trans. CSAE 2016, 32, 254–260. [Google Scholar]
- Lippolis, V.; Pascale, M.; Cervellieri, S.; Damascelli, A.; Visconti, A. Screening of deoxynivalenol contamination in durum wheat by MOS-based electronic nose and identification of the relevant pattern of volatile compounds. Food Control 2014, 37, 263–271. [Google Scholar] [CrossRef]
- Cortellino, G.; Gobbi, S.; Rizzolo, A. Monitoring shelf life of fresh-cut apples packed in different atmospheres by electronic nose. Acta Hortic. 2016, 1120, 71–78. [Google Scholar] [CrossRef]
- Zhu, N.; Mao, S.B.; Zhu, L.Q.; Yuan, L.J.; Tu, K. Early detection of fungal disease infection in strawberry fruits by e-nose during postharvest storage. Trans. Chin. Soc. Agric. Eng. 2013, 29, 266–273. [Google Scholar]
- Zou, X.B.; Zhao, J.W. Distinguishing different cultivar apples by electronic nose on support vector machine. Trans. CSAE 2007, 23, 146–149. [Google Scholar]
- Hui, G.H.; Wu, Y.L.; Ye, D.D.; Ding, W.W. Fuji apple storage time predictive method using electronic nose. Food Anal. Methods 2013, 6, 82–88. [Google Scholar]
- Li, Y.; Ren, Y.M.; Zhang, S.; Zhao, H.; Zhou, L.A.; Ren, X.L. Prediction of low-temperature storage time and quality of apples based on electronic nose. J. Northwest Univ. 2015, 5, 183–191. [Google Scholar]
- Zhang, P.; Li, J.K.; Chen, S.H. The electronic nose 1-MCP at room temperature different time apple discriminant analysis. North. Hortic. 2015, 12, 119–124. [Google Scholar]
No. in Array | Sensor Name | Reaction Compound | Typical Target |
---|---|---|---|
R1 | W1C | Aromatic compounds | C6H5CH3 |
R2 | W5S | Oxynitride | NO2 |
R3 | W3C | Aromatic constituents, mainly ammonia | C6H6 |
R4 | W6S | Hydrogen | H2 |
R5 | W5C | Alkanes, aromatic compounds | C3H8 |
R6 | W1S | Broad Methane | CH4 |
R7 | W1W | Sulfides and organic sulfides | H2S |
R8 | W2S | Broad alcohols | C2H5OH |
R9 | W2W | Aromatics, organic sulfides | H2S |
R10 | W3S | Alkanes, especially methane | CH4 |
Sample Group | Training Set | Testing Set | |||
---|---|---|---|---|---|
Training Samples | Number of Apples | Training Samples | Number of Apples | ||
Group A | Fresh | 54 | 54 | 10 | 10 |
Penicillium expansum | 54 | 54 | 10 | 10 | |
Aspergillus niger | 54 | 54 | 10 | 10 | |
Group B | Fresh | 49 | 490 | 9 | 90 |
Penicillium expansum | 45 | 450 | 8 | 72 a 8 b | |
Aspergillus niger | 45 | 450 | 8 | 72 a 8 b |
Sample Group | Algorithm | Recognition Rate of Training Set | Recognition Rate of Testing Set |
---|---|---|---|
Group A | LDA | 79.6% | 66.7% |
SVM | 94.4% | 80.0% | |
RBFNN | 88.9% | 83.3% | |
BPNN | 96.3% | 90.0% | |
Group B | LDA | 68.4% | 64.0% |
SVM | 70.5% | 64.0% | |
RBFNN | 71.9% | 68.0% | |
BPNN | 77.7% | 72.0% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, W.; Liang, G.; Tian, H.; Sun, J.; Wan, C. Electronic Nose-Based Technique for Rapid Detection and Recognition of Moldy Apples. Sensors 2019, 19, 1526. https://doi.org/10.3390/s19071526
Jia W, Liang G, Tian H, Sun J, Wan C. Electronic Nose-Based Technique for Rapid Detection and Recognition of Moldy Apples. Sensors. 2019; 19(7):1526. https://doi.org/10.3390/s19071526
Chicago/Turabian StyleJia, Wenshen, Gang Liang, Hui Tian, Jing Sun, and Cihui Wan. 2019. "Electronic Nose-Based Technique for Rapid Detection and Recognition of Moldy Apples" Sensors 19, no. 7: 1526. https://doi.org/10.3390/s19071526
APA StyleJia, W., Liang, G., Tian, H., Sun, J., & Wan, C. (2019). Electronic Nose-Based Technique for Rapid Detection and Recognition of Moldy Apples. Sensors, 19(7), 1526. https://doi.org/10.3390/s19071526